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An innovatory on–line method of power system frequency estimation and voltage/current signals 
resampling is presented. The method is designed to increase the accuracy of power system equivalent 
harmonic impedance estimation using simple DAQ systems. Estimation of instantaneous frequency uses 
5–th degree polynomial interpolation of filtered signal zero crossings time positions. Final resampling 
uses cubic splines interpolation for the calculation of output signal values. The details of resampling 
algorithm are described.  

The results of simulation tests demonstrating the typical behavior of a power system were shown as 
well as results of real voltage signal resampling. The method shows good capabilities of tracking varying 
harmonic phase angles in reference to the fundamental one while phase/frequency of fundamental 
harmonic varies too. The computational complexity allows to implement the method as a realtime 
version on DSP. Comparison of the amount of math operations used in this and another method [1] is 
shown too. 
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1. INTRODUCTION 
 

The requirement of model parameters determining for working power system often appears these 
days. One of these parameters is the equivalent impedance seen from the point of measurement. The 
knowledge of this impedance is necessary to calculate harmonic sources on the supplier and 
customer side, in diagnostics of the power network and for deciding on connecting or not a new 
load to the line.  

Estimates of harmonic impedances base on increments of harmonic voltages and currents 
phasors, therefore they are especially sensitive to harmonic estimation errors. The increments 
during normal work of the system are very small, usually below 1%. I connection with low 
resolution of ADC, this causes significant estimation errors. Another important source of estimation 
errors is non-coherent sampling, typical for simple DAQ systems. Non-coherent sampling results in 
harmonic leakage and phase shift of voltage and current harmonics.  

The first source of errors cannot be suppressed entirely by a non-invasive method, which uses 
only natural voltage and current waveforms without intentional disturbances of the system state. 
However these errors could be reduced using ADC with high resolution.  

The second source of errors can be suppressed by coherent sampling (PLL synchronized ADC) 
or coherent resampling of interpolated non-coherent sampled signals.  

Two variants (off-line and on-line) of the resampling algorithms have been developed. The 
methods and the results are presented in the following sections.  

Most of the papers concerning signal resampling touch on interpolating function (reconstruction 
filter) selection [2, 3]. It is of great importance when aliasing may appear as a result of resampling 
[4]. In some of the described cases the sample rate conversion ratio is a constant, rational number 
and is not close to 1 [5]. Such values of sample rate conversion ratio are used for image scaling or 
for reducing the amount of digital information (e.g. for transmission or storage). Points at which 
signals have to be resampled are determined in such cases. The problem of finding such points 
occurs when input and output sample rates differ only slightly and the ratio is variable, which is the 
case in software radio and in coherent resampling of a power system voltage signal.  



The original idea of this paper consists not in selecting the interpolating function but in a 
completely new way of determining time points at which the resampling of the power network 
voltage signal have to be performed. It is not a trivial task, as in the case of power network voltage 
signals the rate conversion ratio varies and is very close to unity. The finding of resampling time 
points uses interpolation of input signal zero crossing points. An alternative way of doing this is 
presented in [1]. As it can be assumed that the power network voltage is a band limited (low pass) 
signal and the output sample rate is very close to the input one, cubic splines are used for final 
resampling. It is yet possible to use other interpolating functions instead of cubic splines.  

Another achievement is the proposal of a new, smooth estimator of instantaneous power system 
frequency based on above mentioned zero crossing detection. The estimates are smooth (free from 
noise) in comparison with other algorithms, e.g. [6, 7] and some algorithms presented in [8]. 

 
 

2. PROBLEMS WITH NON - COHERENCY IN HARMONIC IMPEDANCE ESTIMATION 
 

A typical single - phase model of a power system is shown in Fig. 1. 
 

 
 

Fig. 1. Single - phase model of a power system for h harmonic. 
 

Calculation of the equivalent system impedance ( )SZ h  requires ( )SZ h  and ( )SE h  to be invariant 
during measurement as well as knowledge of ( )U h  and ( )I h  in two different states of the power 
system [9]. The system states differentiation is the result of customer side ( ( )CZ h , ( )CJ h ) 
parameters variability. This situation is described by the following divided differences  
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where h  denotes harmonic order, ( )SZ h  is estimated power system impedance, ( )U h , ( )I h  are 
voltage and current phasors adequately in the first state of the power system and ( )U h′ , ( )I h′  are 
voltage and current phasors in the second state ( Z , U , I  are complex numbers).  

One of the most important problems in estimating of ( )SZ h  is non - coherent sampling of 
voltage ( )U t  and current ( )I t  signals which are used then to determine the harmonics ( )U h , ( )I h . 
Coherent sampling of periodic input signal means that an integer number of the signal periods fits in 
the sampling window. 

As it is commonly known, the frequency of the fundamental harmonic is not stable. This is 
related to a changing ratio of demand/delivery of power. Simple DAQ systems do not make use of 
PLL for sampling frequency synchronization. They work with the assumption that the fundamental 
frequency equals a nominal value. In majority of such DAQ systems in use signals are sampled 
non-coherently.  

Non-coherent sampling causes two effects: harmonic leakage and phase shift of harmonics.  
The harmonic leakage effect is manifested as magnitude and phase errors of voltage and current 

harmonics. Although this effect could be limited by proper selection of the shape and length of the 



window, the problem becomes important when the estimated parameter (here ( )SZ h ) depends on 
differences of phasors as in (1), as the differences of phasors in real power system are often small. 

The problem of harmonics phase shift arises when consecutive time windows begin with 
different time offsets from the zero crossing of the fundamental harmonic. When the fundamental 
frequency is constant and differs from the nominal (e.g. 50 Hz), the phase shift between harmonics 
and the beginning of the sampling window is linearly increasing/decreasing. This is not a problem 
when a two-terminal network model is considered, because the numerator and denominator have an 
identical phase error ξ  which compensates as follows: 
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In reality the two-terminal network cannot be used because of unknown source voltage SE . Then 

one has to use equation (1) to calculate SZ . And again, the problem becomes important when using 
differences U∆  and I∆  of phasors. Unfortunately in general: 
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In (2) and (3) the harmonic index h  has been omitted for simplicity, ϕ  denotes the phase angle 

between current and voltage phasors, α , β  denote additional phase changes in U  and I  between 
two states of the power system.  

The influence of both effects on impedance estimation accuracy is considerable, especially for 
high order harmonics. The necessity of decreasing equivalent harmonic impedance estimation errors 
requires coherent signal sampling (using e.g. PLL) or signal resampling [10]. 

 
 

3. RESAMPLING METHOD 
 
The input signal ( )x t  is sampled at constant rate 1

ST , with the assumption that one period of the 
fundamental harmonic of ( )x t  fits exactly M  samples ( )x n . This assumption may be not fulfilled, 
as the period of the fundamental harmonic in a power system may differ from nominal value. Thus 
resampling of samples ( )x n  has to be done to get M  samples ( )y k  per period. The key issue is the 
way of calculating of time positions at which the sampled input signal has to be resampled. These 
positions will be called resampling moments.  

All the proposed algorithms use detection of zero crossings of the input signal to calculate 
resampling moments. 

 
3.1. Zero crossing detection 

 
All variants of the method base on period length measured as the time between two consecutive 

downward zero crossings. The time moment ic  of i -th zero crossing is described by  
 
 i i S ic n T d= − , (4) 
 



where in  is the number of sample following the zero crossing moment, ST  is sampling interval of 
input signal ( )x t , id  is time interval between the zero crossing and i Sn T  as shown in Fig. 2. The 
value of id  is found using linear interpolation as below: 
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Fig. 2. Detection of i-th downward zero crossing instant ic  of the original signal x(t) (dashed line) basing on its 
samples x(n) (circles). 

 
The length ip  of i - th period of the signal is given by  
 
 1i i ip c c −= − . (6) 
 
Signal distortion may cause additional undesirable zero crossings. Therefore, in most cases, 

signal filtering is required. The filter should be of linear phase and should pass only the 
fundamental harmonic of the signal. A fragment of the frequency response of the 400-th order FIR 
filter we used is shown in Fig. 3. 

However, when the signal distortion is small, the zero crossing detection can be applied to a raw 
signal. 

 

 
 

Fig. 3. Frequency response of the FIR filter. 



3.2. Variant 1: constant frequency between two following upward zero crossings, off-line 
 
The simplest approach is assuming that the frequency is constant in ip  period. Off-line version 

initially calculates consecutive zero crossings in the loop. After finding the i -th zero crossing, the 
ip  period is divided into M  equal intervals. Ends of intervals describe equally distributed time 

moments mt  at which the interpolation of the original signal ( )x n  is performed. Relative positions 
of mt  moments (from the beginning of i -th period i.e. from 1ic − ) are described by formula: 

 

 m i
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where 0 1m …M= − .  

Absolute positions kt  (from first detected zero crossing 0c ) of interpolation time moments are 
characterized as:  
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where ( )mod k M,  is remnant after division k M/ .  

Output signal samples ( )y k  are values of cubic spline passing through input signal samples 
( )x n  calculated at resampling moments kt  (Fig. 4).  

Unfortunately as the frequency value is assumed to be constant during one period it may have 
discontinuities at zero crossing. There can be also discontinuities in the output signal ( )y k . 

 

 
 

Fig. 4. Resampling of ( )x n  by interpolation. 
 
 
3.3. Variant 2: variable frequency between two following downward zero crossings, off-line 
 
As the frequency of the fundamental harmonic in the power system varies in a continuous way, 

one may consider non-uniform placing of mt  resampling moments during one voltage/current 
period.  

Equation (8) is no longer valid as the resampling moments kt  are now calculated using cubic 
spline interpolation. Zero crossings ic  are values of equally spaced interpolation nodes. The nodes 



interval equals M, it is one period of the input signal fundamental harmonic, as we want to get 
exactly M samples in each period. Then resampling moments kt  are calculated as interpolative 
values at M equally distributed points in each of all periods. The relationship between mt  and kt  
consists in that mt  concern only one period of fundamental harmonic, while kt  are concatenated and 
unwrapped resampling moments mt  from all consecutive periods. The idea of this interpolation has 
been shown in Fig. 5.  

 

 
 

Fig. 5. Interpolation of ic  (zero crossing positions in time) in order to calculate non-uniform placed mt  points. 

 
As in the previous variant, after calculating all kt  resampling moments, the final cubic splines 

interpolation (resampling) is performed on the whole signal ( )x n .  
This approach is a generalized form of the variant 1. Performing of linear interpolation of zero 

crossings positions ic  is equivalent to assuming constant frequency within each period.  
Having calculated kt  resampling points we can construct a smooth estimator of instantaneous 

frequency of the fundamental harmonic 
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3.4 Variant 3: the on-line version 
 
A drawback of two presented above off-line variants is that they operate on the whole signal. 

Thus the amount of data used may exceed available memory capacity. The weakness of the 
previously presented method can be overcome by working on subsets of input signal samples ( )x n .  

The on-line variant works in a loop. It processes the input signal sample by sample and after 
each downward zero crossing it returns one period (M samples) of the resampled signal. Each loop 
run consists of the following steps:  
1. In this method a sample of the input signal ( )x n  is read and stored in a buffer of the length of 

3M  samples. The oldest sample is forgotten. If there was not zero crossing between points 



( 1)x n −  and ( )x n  step 1 is done again. If the downward zero crossing ic  was detected step 2 has 
to be performed. 

2. Period length ip  is calculated (as described in sect. 3.1). The zero crossing 2ic −  becomes new 
time origin 0t = . Lengths of last three periods 2ip − , 1ip − , ip  stored in memory are utilized to 
make vector C containing times of last four zero crossings relative to 0t = . The form of vector C 
is: 2 1 1[ 0 ]i i i ip p p p− − −− + . Auxiliary vector [ ]MMMN 2    0  −=  is also formed.  

3. Pairs of vectors elements ( )j jN C,  become interpolation nodes. The nodes are equally spaced by 
distance M so [ ]MMMN 2    0  −= . Fifth degree polynomial I on nodes ( )j jN C,  0 3j ots=  is 
calculated. Then M non-uniformly spaced resampling moments mt  are found as the interpolant I 
values at points [ ]1  ...    ...  1   0 −Mm  (Fig. 5). Resampling moments mt  are the points at which 
the input signal ( )x n  has to be resampled. 

4. The final resampling (interpolation) of the 1ip −  period of the input signal samples ( )x n  is 
performed. To reduce the computing time, the interpolation uses only input signal samples 
within and nearby 1ip −  period, that is values ( )x n  where 0[floor( ) 3 ceil( ) 3)]S M Sn t T t T= / − ; / + . 
Moreover, as the time origin 0t =  may be placed between ( )x n  samples, the correction of 
samples time position is necessary before final interpolation is done. The new time positions of 
interpolation nodes are 2S inT d −− , where id  is the offset from time origin 0t =  ( 2ic − ) to the 
nearest following sample of ( )x n  (Fig. 5). The final interpolation uses cubic splines to evaluate 
the pack of M samples of the output signal ( )y k . The M samples are returned to the output. After 
that, a next run of the loop is performed.  
Some details have to be explained here. As this is an on-line variant, the interpolation (see point 

3.4 above) used to calculate resampling moments mt  differs from that described in sect. 3.3. During 
each loop run the interpolant I is calculated using four nodes saved in vector C at positions saved in 
vector N. For the sake of simplicity let us denote jC  to be an element of vector C, Nj to be an 
element of the vector N and, where j changes from 0  to 3 . The interpolation takes place between 
two zero crossings 2ic −  and 1ic −  is in the range 1N  to 2N . In the next loop run the interpolation 
range is moved one downward zero crossing forward. To ensure continuity of I as well as of the 
first and second derivatives of I, the values 2( )I N , 2( )I N′ , 2( )I N′′  in i -th loop run must be equal 
to 1( )I N , 1( )I N′ , 1( )I N′′  adequate in 1i +  loop run. Central difference quotient of 1C , 3C  is used 
as approximation of first derivative at 2N  position. Approximation of second derivative at 2N  uses 
values 1C , 2C , 3C . In this way six conditions describing the fifth order polynomial I were obtained. 
They form a linear system:  
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where h  is an interval between nodes positions N. As h is constant (equals M) the matrix of above-
mentioned system (10) is constant, so its inversion have to be calculated only once. Therefore 
calculation of interpolant I coefficients in each one loop run requires only one matrix-vector 
multiplication (matrix is of the 6 6×  size).  



The need to have continuous second derivatives is related to instantaneous frequency estimator 
form (9). Frequency estimation results are shown in Fig. 6. A higher degree interpolating 
polynomial has been also tested but it results in larger oscillations of frequency estimates.  

 

 
 

Fig. 6. Real and estimated frequency values. 
 
As the ( )x n  used for zero crossings detection is the filtered voltage signal ( )u n , the ( )u n  has to 

be equally delayed as the ( )x n  is. Delaying may be done by an odd length R + 1 FIR filter having 
coefficients 1jh =  when 2 1j R= / +  and 0jh =  otherwise. The constant delay introduced by the 
filter has the length SRT .  

Moreover, input signal frequency deviation should be small enough to keep the fundamental 
harmonic in the pass band of the filter in use. Fortunately the fundamental voltage harmonic 
frequency in a normal state of the electric power system changes in small limits [11]. Norm [12] 
demands the fundamental frequency to be kept in the range 49.5 – 50.5 Hz during 95 % of a week.  

The start of the algorithm needs assuming that the length of period pi, before the first zero 
crossing detected, is equal to the nominal period of fundamental voltage harmonic in the power 
system. As it was pointed above, the method uses three last period lengths to calculate resampling 
positions tm. This as well as initial assumptions concerning period length implies initialization needs 
four downward zero crossings of x(n) to be detected before getting correct resampling positions.  

It is impossible to determine the total delay of the output signal y(k) in relation to the input signal 
x(n), because input and output sampling rates are different. Moreover, the output samples are 
returned in packs of the length of M with variable rate equal to the rate of consecutive downward 
zero crossing of the input signal. It is important that the first 4M samples of the y(k) should be 
discarded due to initialization. 

 
 

4. TESTS 
 
To check the correctness of the method (on-line variant) some tests was have been performed on 

various simulated signals. The test input signals consist of three harmonic of the order 1, 7 and 37 
with constant amplitudes 1, 0.4, 0.25 and initial phase angles 0º, 90º, 60º respectively. Then the test 
signal was modified in the following way:  
1. The real fundamental harmonic frequency f1 of the test signal was constant, different from 

nominal 1Nf  (assumed during input signal sampling). f1 = 50.3 Hz, while f1N = 50 Hz. The 7-th 
and 37-th harmonics phases are linearly changed with reference to the 1-st harmonic phase. The 
7-th one changes from 90º at 0 s to 45º at 2 s. 37-th changes from 60º at 0 s to 90º at 2 s.  



2. Sinusoidal frequency modulation of input signal: 1f  was modulated with an amplitude of 0.5 Hz 
around mean 50 Hz with the modulation frequency of 1 Hz. the maximum rate of change of 1f  
was relatively small – 0.15 Hz/s.  

3. A sudden and relatively large frequency deviation was applied to the input signal. Such a 
phenomenon could be observed during starting of a big load (e.q. electric motor) connected 
directly to the transformer. When the temporary power demand during start-up exceeds the 
transformer capacity, a temporary ,,sag” of frequency can be observed at load terminals. After 
,,sag” 1f  returns to the nominal value, as shown (dashed line) in Fig. 6. The maximum rate of 
change of 1f  was large [11] and reaches even 20 Hz/s.  

4. The last test used a real 50 Hz signal, from a medium-voltage system, sampled at a 10 kHz rate. 
As the signal was sampled without any antyaliasing filter it isn’t limited in frequency. The mean 
fundamental frequency of the signal was about 49.97 Hz. The test aim was to show how phase 
angles and amplitudes of harmonics are tracked before and after resampling. 

 
 

4.1 Error calculation 
 
The amplitudes and phases of given harmonics were measured on signals before (input signal x) 

and after (output signal y) resampling. The aggregated errors from tests 1 - 3 of measured values 
were calculated as described:  

 
 max ( )X h hh

abs X Aae = − , (11) 

 
 max arg( )h hX h

Xpe ϕ= − , (12) 

 
 max ( )Y h hh

abs Y Aae = − , (13) 

 
 max arg( )h hY h

Ype ϕ= − , (14) 

 
where hX , and hY  are complex Fourier coefficients of h harmonic of x and y calculated in one 
realization of FFT. The length of the time window equals M samples and it is one period of the 
nominal frequency 1Nf . hA  and hϕ  are h harmonic amplitude and phase. ae means amplitude error 
and pe means phase error. The errors values are shown in Fig. 7. 



 

 

  

 

 

 
Fig. 7. Simulated measurement results of 1-st, 7-th and 37-th harmonic (before resampling - continuous, after 

resampling - dashed). Columns from left to right show tests 1 to 3 adequately. First row: amplitudes of harmonic; 
second: phases; third: max. amplitude meas. errors; fourth: max. phase meas. errors; spectrum of signals from selected 

realization. 
 



 
4.2. Results 

 
Test 1 (left column in Fig. 7) shows good tracking capabilities of variable phases of higher 

harmonics with the 1-st used as reference, even in the presence of permanent phase shift of the 1-st 
harmonic due to f1 frequency different from nominal f1N. The maximum phase error after 
resampling amounts to about 3. The maximum amplitude error after resampling does not exceed 
0.4%. 

Test 2 (middle column in Fig. 7) shows that mutual relations between phase angles of harmonics 
are kept after resampling, despite frequency modulation of the fundamental harmonic.  

Test 3 (right column in Fig. 7) shows rather good performance of the algorithm in the presence 
of a sudden and relatively fast fundamental frequency change. It could be observed (second row, 
right column in Fig. 7) that phase angles of higher harmonics oscillate during such strong 
disturbance. After the disturbance frequency f1 returns to the nominal value and then a constant, 
small error, about 0.01% of 37-th harmonic amplitude, occurs.  

Test 4 results cannot be characterized through measurement errors, because real values of 
harmonics were unknown. But it can be seen in Fig. 8 that after resampling phase angles between 1-
st and other harmonic are roughly constant, which is not the case for the signal before resampling. 
The amplitudes of harmonics before and after resampling have very close values, thus they have not 
been shown.  

All tests use 10 kHz input signal sampling frequency and M = 200 samples per period of output 
signal fundamental harmonic.  

Table 1 shows maximum harmonic measurement errors values calculated during 1.5 seconds 
long tests 1 - 3.  

 
Tab. 1. Maximum errors values of harmonic measurement from tests 1 - 3 before and after resampling (phase values 

were unwrapped and may be greater than 360º). 

 
 

4.3 Computing complexity comparison 
 
There are two main approaches to signal resampling (interpolation). The first one uses 

polynomial interpolation and the second uses an interpolation filter having sinc impulse response. 
The Author used the first approach with cubic spline interpolant. Other kinds of interpolants (B-
splines and modifications), presented in [5], were not considered here. Other methods of reducing 
harmonic leakage, using no interpolation, were proposed in [13]. 

An advantage of the sinc filter approach is that a banded signal keeps its band after resampling. 
That cannot be told in case of cubic splines interpolation. But the problem with FIR approach is that 
each output sample (each interpolation) requires calculation of all filter coefficients shifted slightly 
in time. There are some ways of reducing computing complexity. Calculation time can be reduced 
by decreasing filter length. Another way consists in precalculated FIR coefficients for some 
quantized time shifts. This causes some timing errors [1]. Both approaches worsen the spectral 
properties of ideal FIR filtration. The impact of filter coefficients quantization was studied in [14, 
15].  

 Test 1 Test 2 Test 3 
 before after before after before after 

Harmonic 
order 

Max 0,9 0,001 0,58 0,0001 0,75 0,005 1-st 
Amplitude 1,2 0,013 2,45 0,01 1,35 0,01 7-th 
Error [%] 8,8 0,408 21,3 0,56 63,2 0,43 37-th 

Max 168 0,003 56,3 0,003 18 0,09 1-st 
Phase 1311 3,13 588 0,021 126 0,63 7-th 

Error [deg] 6332 0,16 2166 0,16 401 3,3 37-th 



A comparison of the number of multiplications and additions necessary for resampling one 
period of a signal using sinc FIR filter and cubic splines is shown in Tab. 2. The number of required 
operations was estimated with the assumptions that calculation of a polynomial value uses Horner’s 
scheme, values of ( )sin x  function are approximated using a power series of length 5, solving of 
linear system with tridiagonal matrix uses the optimal method.  

 
Tab. 2. Amount of operations needed for calculating of one period of the output signal (M samples) using sinc filter 

(length N) and cubic splines 
 

Type of operation multiplications additions
calculation coeffs. of N length FIR for M output samples 6NM 4NM 
M times convolution of filter coefs. With input signal NM NM 
overall math operations required for FIR interpolation 7NM 5NM 
solving linear system of 4(M-1) equation with tridiagonal matrix 20M-24 12M-15 
M times calculation of value of 3-rd degree spline (polynomial) 3M 3M 
overall math operation required for cubic spline interpolation 23M-24 15M-15 
 
It can be seen that comparable computing effort for both methods can be reached for FIR of the 

length about 3 . But such a short FIR filter cannot give good results of resampling.  
The presented method (third variant) is an on-line one that does not necessarily mean realtime. In 

its present form, it can be used for resampling very long signals of voltage and current stored in 
files. The profit of the on-line variant is that it works on portions of signals instead of loading whole 
data to memory. Relatively small computing requirements, with reference to the capabilities of 
present-day DSPs and CPUs, allow to implement the presented method on DSP for realtime 
operation.  

 

 
 

Fig. 8. Harmonics phase angles of the real signal. 
 
 

5. CONCLUSIONS 
 
The presented method joins well known techniques in an original way thus giving a tool for the 

estimation of harmonics phase angles and amplitudes of voltage and current as well as the 
instantaneous frequency of a power system. The tests proved good capabilities of tracking phase 
angles changes for fundamental harmonic and between harmonics, even in case of large phase 
deviation.  

The novelty is the way of estimation of power system instantaneous frequency using polynomial 
zero crossings time moments interpolation. The estimate of frequency is smooth in comparison to 



others [6,7] and requires less computations than e.g. the nonlinear least squares method [16]. In that 
way it helps to calculate the proper time shift for each output sample. 

The correction of non-simultaneous sampling of current and voltage is also possible. The last is 
needed for correct estimation of power system impedance and harmonic currents and voltages phase 
angles relations. 

The on-line variant of the method can be adapted to realtime form used in DSP based 
measurement systems.  
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METODA ESTYMACJI CHWILOWEJ CZĘSTOTLIWOŚCI ORAZ KOHERENTNEGO REPRÓBKOWANIA 
SYGNAŁÓW NAPIĘCIA/PRĄDU. 

S t r e s z c z e n i e 

W artykule przedstawiono innowacyjną metodę estymacji częstotliwości napięcia sieci energetycznej oraz sposób 
koherentnego repróbkowania sygnału napięcia sieci energetycznej.  

Potrzeba przepróbkowania sygnału wynika z faktu, iż częstotliwość napięcia sieci energetycznej nie jest stała lecz 
zmienia się w sposób ciągły. Proste systemy akwizycji danych najczęściej umożliwiają wybór stałej częstotliwości 
próbkowania i nie pozwalają synchronizować tejże z aktualną częstotliwością mierzonego sygnału. Fakt ten powoduje 
rozmycie prążków widma częstotliwościowego sygnału i utrudnia ocenę faz harmonicznych sygnału. Błędy estymacji 
widma sygnałów sieci energetycznej powodują powstanie znacznych błędów pomiaru zastępczej impedancji sieci 
energetycznej metodą bierną prezentowaną w [10].  



Proponowana metoda wykorzystuje nowatorski sposób wyznaczania punktów czasowych, w których powinien 
zostać zrepróbkowany sygnał mierzony. Do wyznaczenia czasowych punktów repróbkowania wykorzystano 
interpolacje kolejnych wartości czasów przejść przez zero mierzonego sygnału. Wariant, pozwalający na 
repróbkowanie sygnału na bieżąco, wykorzystuje wielomian piątego stopnia do wyznaczenia stałej, całkowitej liczby 
punktów repróbkowania przypadających na jeden okres badanego sygnału. Warunki nałożone na wielomian 
interpolujący zapewniają ciągłość jego oraz jego pierwszej i drugiej pochodnej, nawet w warunkach pracy na bieżąco, 
gdy nie są znane chwile czasu przyszłych przejść sygnału przez zero. Dzięki ciągłości pochodnych wielomianu 
możliwa jest estymacja chwilowej częstotliwości podstawowej harmonicznej mierzonego sygnału zgodnie z zależnością 
(9). Otrzymany estymator jest gładki w porównaniu do innych estymatorów bazujących na metodach statystycznych [6, 
7]. Repróbkowanie sygnału badanego w uprzednio wyznaczonych punktach czasowych wykorzystuje interpolację 
funkcjami sklejanymi trzeciego stopnia.  

Zaprezentowano wyniki testów symulacyjnych pokazujących typowe zachowanie systemu energetycznego oraz 
wyniki repróbkowania rzeczywistego sygnału napięcia sieci energetycznej dla kilku wybranych harmonicznych. 
Metoda ma dobre własności śledzenia zmieniających się kątów fazowych harmonicznych w odniesieniu do fazy 
podstawowej harmonicznej, nawet w sytuacji gdy faza lub częstotliwość podstawowej harmonicznej się zmienia. 
Złożoność obliczeniowa pozwala na implementację algorytmu na procesorze sygnałowym w celu zbudowania 
przyrządu pracującego w czasie rzeczywistym. Przedstawiono porównanie ilości operacji matematycznych potrzebnych 
do repróbkowania sygnału prezentowaną metodą oraz metodą wykorzystującą interpolację funkcją sinc.  

 


