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The paper deals with selected aspects of modelling dynamic properties of contact thermometric sensors and 
reducing the dynamic error occurring in measurement of time-variable temperature as well as in measurement of 
constant temperature while the sensor output is settling. Due to volume limitations the paper is only an outline and 
presents some problems superficially. An attempt to present a wider study on the subject with rich bibliography is 
presented in the authors’ monograph [1]. 
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1.  INTRODUCTION 
 

Neglecting static and dynamic parameters of the sensors can lead to erroneous interpretation 
of measurement results. In many situations it results in degradation of the process control 
performance or possible damage of the production line components due to incorrect action of the 
control system actuators. Good examples of industry applications, where rapid growth of the 
temperature can result in possible disaster, are: nuclear power plants, chemical industry, and 
aviation or machine industry. Static error correction does not involve serious problems. The 
dynamic properties of e.g. a thermometric sensor are connected with its thermal inertia and 
thermal resistance between the medium and the sensor. 
 
 

2.  MODELS OF DYNAMIC PROPERTIES 
 

Expertise on dynamic properties of a sensor makes the determination of the dynamic 
component of the measurement error possible. In the case of a thermometric sensor it is also a 
key factor that makes possible appropriate choice of: 
• correct model of the dynamics, 
• correction system and its parameters while measuring variable temperature, 
• sample time for discrete-time models in computerised measuring systems. 
 

2.1. Linear models 
 

Most contact thermometric sensors can be considered as a homogeneous cylinder of mass m, 
thermal conductivity λ, specific heat cp, heat transfer surface F and heat transfer coefficient α. For 
a sufficiently great value of λ and sufficiently small cylinder diameter such a sensor can be 
considered, for small increments of the temperature, as a linear element described by a first order 
differential equation with constant parameters: 
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and T - temperature (sensor input signal), TT - measured temperature (sensor output signal). 
 

Table 1. Transfer function models of sensors’ dynamics. 

Transfer function Response to temperature step from Tp to Tm. 
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Γ – Euler gamma function 

r – rational 3.8 

 



   
 

Fig. 1. Step response of sensor described by transfer function (3.8). 
 
For a step input signal the time constant NT is equal to the time after which the sensor output 

reaches 0.632 of the input step value. The concept of temperature increment: pTT TTΘ −= )()( ττ  
and ( ) pTτTτΘ −=)(  is used to obtain zero initial conditions, which enables the sensor’s dynamics 
to be described in the frequency domain using the transfer function. Typical transfer function 
models are collected in Table 1 on the basis of [1-4]. The sensor construction and conditions of 
the heat transfer between the sensor and the medium the temperature of which is measured, are 
the basis of decision which specific transfer function should be chosen. The last of the models, 
described by (3.8), has particular properties. Choosing an appropriate value of the parameter r it 
is possible to obtain step responses similar to responses of the remaining models (except the 
model with the transport delay (3.4)). The step responses of model (3.8) for different values of r 
are shown in Fig.1 [5]. In practice, it is not recommended to use models of order greater than 4 
because usually it does not improve the accuracy of approximation of real sensor dynamic 
parameters and involves amplification of noise when correction systems or algorithms are 
applied. The step responses of real sensors, according to their construction, are presented in 
Fig.2. 
 

 
 

Fig. 2. Step responses of real sensors, where: 1 – sensitive part of the sensor, 2 - shield, 3 – insulating shell. 
 

2.2. Nonlinear models 
 



Application of linear models is reasonable when the simplifications do not cause significant 
discrepancy between responses of the real sensor and its model. For greater increments of 
temperature which most often occur in practice, the thermal parameters of materials the 
thermometer is built of, change with temperature. Moreover, the heat transfer between the 
medium and the sensor is mainly radiative. It imposes the application of nonlinear models that 
takes into consideration changes of the “time constant” dependent on the measured temperature 
Tm and the sensor instant temperature TT. Existence of this changeability gives reason to 
introduce the concept of dynamic parameter instead of time constant: 
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which means that, after substituting (4) into (1), the dynamic properties of the thermometer are 
described by a nonlinear differential equation. 

 

   
 

Fig. 3. Specific heat cp (a) and heat transfer coefficient λ (b) versus temperature for different metals used to build 
thermocouples: 1 - iron, 2 - low-carbon steel, 3 - stainless heat resisting steel: 12X18H10T, 4 - alloy: 90%Ni, 

10%Cr. 
 

The dependence of the specific heat cp and the heat transfer coefficient α on temperature in the 
above equation is difficult to define because these quantities depend on many factors, like 
material and construction properties or operating conditions of the thermometer. The changes of 
the specific heat cp with temperature T for selected materials that are used to build thermometers 
are shown in Fig.3a. The values of cp are given with reference to cPo, i.e. the specific heat at 
273K. 

The second quantity responsible for dynamic nonlinearity of the sensor is thermal conductivity 
λ (Fig.3b). The dependence of λ on the temperature should be taken into account in one- or two-
dimensional models of heat transfer at the cross-section as well as along the sensor. 

The heat transfer coefficient α  is also strongly temperature-dependent. We can distinguish its 
two components: 

 
 ),(),(),( mTrmTkmT TTTTTT ααα += , (5) 



 
where: αk - convective heat transfer coefficient, αr - radiative heat transfer coefficient, W/(m2K). 
The dependence of αk on the temperature and the thermometer diameter d is described by: 
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The parameter A2, W/(m7/4K5/4) is a function of mean temperature T’=(Tm+TT)/2 and this 
relationship is strongly nonlinear. The value of A2 depends on the medium, its velocity and 
pressure. Equation (6) follows from generalizations related to investigations on so called 
dimensionless equations. The second component in (5), i.e. αr, is strictly defined by the analytic 
relationship: 
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where: ε - emissivity of the sensor material, σo=5.67·10-8 W/(m2K4) - Stefan-Boltzmann constant 
of blackbody radiation. 
For purely radiative heat transfer the thermometer’s nonlinear dynamic model can be derived 
from the following heat balance: 
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The above equation can be transformed into: 
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In this case the dynamic parameter is defined as: 
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where its initial value NTp - at temperature Tp, and final value NTm - at temperature Tm, are defined 
as: 
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where cpo and cpm are values of cp at temperature Tp and Tm respectively and ρ is the density, 
kg/m3. 



In practice, taking into consideration the temperature dependence of the specific heat, the 
material parameters (density, emissivity) and the sensor dimensions (radius) is very burdensome. 
Therefore, it is convenient to use substitute nonlinear models derived for specific constant 
conditions of the heat transfer. One solution is to assume that changes of the dynamic parameter 
can be described by a polynomial (over some range of operating temperatures) of the current 
temperature, e.g.: 

 
 ( ) 2

TTTpTT atbtNtN ++=  (12) 
or 
 ( ) ( )TTpTT atexpNtN = , (13) 
 
where: NTp - initial value of the dynamic parameter at initial temperature Tp, s; b - first order 
coefficient of nonlinearity, s/°C; a - second order coefficient of nonlinearity, s/(°C)2. 
Step responses of different nonlinear models [6], under assumption tp = 0°C, can be compared in 
Fig. 4. 
 

    
 

Fig. 4. Step responses for different values of ratio NTm/NTp obtained for: (a) 1 - Eq. (12) for a>0 and b<0, 2 - Eq. (13) 
for a<0, 3 - Eq. (12) for a= 0 and b<0, 4 - Eq. (12) for a<0 and b= 0, 5 - Eq. (3.1), (b) 1 - Eq. (12) for a<0 and b>0, 

2 - Eq. (13) for a>0, 3 - Eq. (12) for a=0 and b>0, 4 - Eq. (12) for a>0, 5 - Eq. (3.1). 
 
 

3.  IMPROVEMENT METHODS OF DYNAMIC PROPERTIES 
 

Reduction of the dynamic error can be obtained by: 
• elimination of air gaps, 
• reduction of sensor dimensions, 
• using materials with better heat conductivity for sensor shells, 
• using heat-conductive paste (in measurements of surface temperature), 
• increasing contact pressure and surface. 
However, the sensor construction and positioning are frequently determined by chemical 
aggressiveness of the environment, pressure, vibrations and shocks, range of measured 
temperatures or measurement method. Then, if the dynamic properties of the sensor are still 
unsatisfactory, significant improvement can be achieved by applying one of the methods 



described in the literature. A classification of methods used to “improve” the dynamic properties 
or partly compensate their influence on the temperature measurement error is presented in Fig.5. 
 

 
 

Fig. 5. Classification of methods used to improve dynamic properties of thermometric sensors. 
 

3.1. Construction methods 
 
In the case of thermocouples, better dynamic properties can be achieved using the construction 

with three measuring junctions, the so-called multijunction effect, as shown in Fig.6a [7]. A 
metal cylinder connected to the middle junction deteriorates its dynamic properties. The formula 
for the thermoelectric value of such a sensor design is derived in [1]. Consequently we obtain the 
following formula for the step response [1]: 
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where: NT1 - time constant of junction 1 (Fig. 6a), NT2 - time constant of junction 2, and so on. 
 

 
 

Fig. 6. a) Thermocouple with additional metal cylinder: 1- metal cylinder, 2- shield, A, B - thermocouple wires, b) 
Step responses for different NT2/NT. 

 
The step responses of model (14) for the following conditions: NT1= NT3= NT and NT2/NT =< 1, 
1.25, 1.5, 1.75, 2 >, are shown in Fig.6b. One can see that if 1 < NT2/NT < 1.5, the dynamic 



processing of the thermocouple is clearly better despite the presence of the cylinder which 
increases the time constant NT2 of the middle junction even by 50%. 
 

   
 

Fig. 7. a) Cross-section of three winding thermometer resistor, b) Two-bridge circuit. 
 

The idea of three sensors with reference to thermometric resistors is presented in Fig.7 [8]. In 
the two-bridge circuit in Fig.7b the three sensors from Fig.7a are represented by three resistances: 
resistance Rt1 represents winding u1, resistance Rt2 represents winding u2 and resistance Rt3 
represents winding u3. The derivation of the formula for the voltage U of the bridge is given in 
[1]. Practical realization of this method consists in constructing a resistor with three windings, 
whose second winding (2) should have worse dynamics than the remaining two (1 and 3). The 
worse dynamics can be achieved by increasing the hole (air gap) in which it is mounted. The 
formula for the step response is identical to the one obtained for the three-junction thermocouple 
(Eq. (14)). 

 
3.2. Dynamic method 

 

 
 

Fig. 8. Idea of high temperature measurement using dynamic method. 
 

In the dynamic method the sensor is quickly put into the medium whose temperature is 
measured and its response is recorded. If the steady-state temperature tm exceeds the temperature 
td permissible for the sensor, it is removed back to the original environment when its temperature 
achieves td. The measurement time is restricted to minimum, so only a part of the step response 
can be recorded. This fact is illustrated in Fig.8. Table 2 includes formulas that make it possible 
to determine the true steady-state temperature assuming that tm>>tp and that the sensor’s 



dynamics is described by a first-order linear model (3.1). Therefore, the initial part of the 
recorded step response, i.e. until τ1, is discarded. The method defined by Eq. (15) presented in 
Table 2 is sensitive to random errors and may lead to significant errors in determining 
(predicting) the temperature tm because it uses only few samples (maximum 4) of the sensor 
output signal. Determining the steady-state temperature on the basis of a greater number of 
samples can be realized using the least squares method as the identification method. This solution 
can be applied for linear models (3) as well as for substitute nonlinear models defined e.g. by 
(12) or (13). Other solutions of the prediction problem are also considered in the literature. One 
of them is based on application of artificial feedforward neural network [1]. The advantage of 
such attitude is that it does not require assuming analytical model of the sensor’s dynamic 
properties. Moreover, the computations at the prediction stage are relatively not complex in 
contrast to the training stage. The drawback of this method is necessity of re-training the network 
when the sensor type or the heat transfer conditions. 

 
Table 2. Different methods to determine the steady-state temperature. 

Input quantities Formula for tm Eq. 
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3.3. Dynamic error correction 
 
 

 
 

Fig. 9. Flow of the signal in the measurement path. 
 
The correction is carried out in the measuring chain, typical for measurements of physical 

quantities (Fig.9). The sensor output signal is usually an electric quantity, current or voltage, 
whose value depends on the measured temperature. An additive signal z(τ) represents the 
influence of external electromagnetic fields and network disturbances. The task of the A/A 
converter is usually amplification of the signal, static error correction or, in the case of 
thermocouples, correction of the reference junction temperature. The lowpass filter suppresses 
transmission of disturbances to the input of the dynamic corrector. The correction and filtration 
can be realized entirely as analog or digital. However, the application range of analog correctors 
is limited to measurements of small temperature increments in constant heat transfer conditions. 
The description of analog correctors systems is presented e.g. in [1]. Passive correctors are built 
as R, L, C circuits while the active ones contain additional operational amplifiers to compensate 
for the attenuation of the measured signal. Digital correction offers much wider opportunities. 
Therefore modern automatics systems are realized mostly as hybrid systems. The analog part of 
the system is the sensor along with conditioning circuits that match the signal to the A/C 
converter input. Further processing of the signal is digital, and the correction algorithm is 
implemented in software or hardware, e.g. by using an external digital filter (Fig.10). Such a 
filter is described by the corrector transfer function in the z-operator domain: 
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If we assume m= 1, n= 0 in (16) and choose “matched pole-zero” as the discretization method, 
the coefficients of the corrector processing the output signal of the sensor modelled by transfer 
function (3.1) are defined as follows: 
 

 






 −
−=








 −−
=

K

K

N
hexpaa,

N
hexp

a 010     
1

1 . (17) 

 
On the basis of the analysis presented in [1], it is possible to give the following rule of selection 
of the discretization step h (which is the inverse of the sampling frequency): 

 

 TT N,Nh 030
100

≈≤
π

. (18) 

 
Satisfying condition (18) guarantees absence of aliasing on the one hand and an acceptable level 
of disturbances and noise transmitted to the corrector input on the other hand. In practice, the 
value of h depends on the hardware capabilities or specification of the measurement system. 
Regardless of the applied hardware - analog or digital, the corrector parameters are adequate only 
for conditions in which the identification of the sensor’s dynamics was performed. 

 

 
Fig. 10. Digital finite impulse response filter 

 
The methods of determining the parameters of linear models of the sensor’s dynamics are 

commonly known [2-4,9]. The parameters of nonlinear (linear as well) models defined e.g. by 
(12), can be determined using the method of the least sum of squares. The algorithm is presented 
further in the vector notation and iterative version, convenient for computer implementation [1]. 

Let the minimized function be defined as: 
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where: x = [x1 x2 ... xK]T - vector of K unknown parameters of dynamics model, K - number of 
parameters, M - number of recorded samples. 



Such a form of the function V(x) ensures the existence of a unique minimum at which the 
gradient is zero. The vector F(x) includes differences between the model response and the 
samples measured at consecutive time instants τi: 
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The expression NT(tT) in (21) describes variations of the dynamic parameter of the sensor, 
defined e.g. by (12). Depending on the complexity of the model, the vector x has one of the 
following forms: 
 

 ( )
[ ]
[ ]
[ ] 3

2
1

    
T

T

T

2 =
=
=

⇒=⇒
++

+=
K
K
K

abN
bN

N

atbtN
btN

N
tN

Tp

Tp

Tp

TTTp

TTp

Tp

TT x  

 
The gradient is defined as a vector of partial derivatives (23), whereas the Jacobian matrix is 
defined by (24): 
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For the matrices defined in this way, we can write: 

 

(22a) 

(22b) 

(22c) 



 ( ) ( ) ( ),V xFxJx T=∇  (25) 
 
 )()()()( T xQxJxJxH += , (26) 
where: 
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=
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i
ii

1
xHxFxQ . (27) 

 
The matrix Hi(x) is the Hessian for the i-th time instant defined as: 
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Assuming iterative updating elements of x using the Newton method, we should compute the 
Hessian inverse in each iteration j because 
 
 ( ) ( )jjjj V xxHxx ∇1

1
−

+ −= . (29) 
 
It is a time consuming and numerically complex task because of the term Q(x) appearing in (26). 
Practical applications are designed to work with approximate computation of the Hessian. By 
discarding Q(x) we obtain the Gauss-Newton algorithm which is simple in realization but its 
drawback is weak convergence, because the discarded term carries significant information. In the 
Levenberg-Marquardt algorithm Q(x) is replaced by a normalizing term which is adaptively 
updated while the algorithm approaches the optimum solution. The parameter vector is updated 
as follows: 
 ( ) ( )[ ] ( ) ( )jjjjjjj xFxJIxJxJxx T1T

1
−

+ +−= γ . (30) 
 
For γ = 0 we get the Gauss-Newton method. When γ  tends to infinity, the elements of the 
Hessian tend asymptotically to constant values, which is equivalent to the steepest descent 
method. 
 

3.4.  Adaptive correction using the two-sensor method 
 



 
 

Fig. 11. Adaptive correction using two sensors with different dynamic properties. 
 

Any change of the heat transfer conditions, caused e.g. by a change of the medium velocity or 
change of the measured temperature range, results in the necessity of repeating the identification 
of the sensor model. This is called adaptive correction because the algorithm reacts to changes of 
the operating conditions. Lack of information from the sensor input makes it impossible to 
conduct any classical parameter identification of the sensor in real conditions. Assuming 
arbitrary changes of the temperature with time, the correction problem can be solved e.g. using a 
system with two or more sensors whose dynamic properties are different [10-14]. 

 

 
Fig. 12. Adaptive corrector in the two-sensor method – parameters updated after each sample. 

 
The system with two sensors is shown in Fig.11 where: Tg, Kg - main sensor and main 

corrector, Tp, Kp - auxiliary sensor and auxiliary corrector, n - discrete time instant (τ = h·n). The 
role of the auxiliary corrector is to equalize the dynamic characteristic of the main sensor-main 
corrector path with the auxiliary sensor path. The auxiliary corrector parameters are determined 
on the basis of the auxiliary sensor parameters [15]. Identification of the auxiliary corrector 
parameters using the analog technique is difficult. Much easier implementation of the 
identification algorithm is possible in a digital or - more precisely - microprocessor system. The 
classical algorithms of adaptive signal processing, like LMS or RLS, can be used in their 
versions for discrete time dynamic models. The algorithm of the sensor parameters identification 
is derived in detail in [1,15] and the corrector block diagram implemented using 
MATLAB/Simulink v.5.2 is presented in Fig.12. Transfer of this diagram to newer versions of 



MATLAB (v.7 when this work is published) does not involve problems. The input parameters of 
the corrector are: the order of digital adaptive filters, which are dynamic models of the main and 
auxiliary corrector, and the forgetting factor. The inputs of the corrector are the sensors signals 
while the reconstructed real temperature is the output. The block “Adaptive filter” that appears 
twice in Fig.12 is available in the DSP Blockset library in Simulink. The filter parameters are 
updated on the basis of the identification error, denoted “Error” in Fig.12, employing the RLS 
(Recursive Lest Squares) algorithm. The next figure shows realizations of the adaptive filter 
(Fig.13a) and the RLS algorithm (Fig13b) in Simulink. 

 

 
 

 
 

Fig. 13. (a) Adaptive filter, (b) RLS algorithm for updating the filter parameters 
 
In measurement practice we often deal with nonstationary signals, i.e. signals whose 

autocorrelation function changes. For such signals we have give more weight to more recent 
samples than to old ones to ensure the convergence of the RLS algorithm. To achieve this, the 
algorithm uses the forgetting factor λ  whose value should be chosen from the range (0.1). The 
algorithm with the forgetting factor matches the filter parameters to the variable dynamic 
properties of the sensor if it works e.g. in different heat transfer conditions or over a wide range 
of the temperature. To illustrate how the RLS version of the corrector works, we generated in 
MATLAB/Simulink waveforms from two nonlinear dynamic sensors. It was assumed that the 
dynamic parameters of the main and auxiliary sensor change linearly with temperature: 

 
 ( ) TgTpTgTg btNtN += , (31a) 
 
 ( ) TpTpTpTp cbtcNtN +=  (31b) 



 
and the dynamics is described by nonlinear first-order models. In Eqs. (31a) and (31b), NTp 
denotes the initial value of the dynamic parameter of the main sensor and c denotes the ratio of 
the dynamic parameters NTp(tTp) and NTg(tTg) of the auxiliary and main sensor respectively.  
 

 
Fig. 14. Model of nonlinear sensor defined by equation (12) for a=0 

 
The model of the nonlinear sensor is presented in Fig.14. The sensors were excited by a sum of 
three sine curves with the same amplitude and frequencies: 25 Hz, 50 Hz and 100 Hz. The 
amplitude of the input was normalized to the range 〈0,1〉. It was also assumed that the random 
errors have a Gaussian distribution with a zero mean and the standard deviation δ = (1/3)· 0.01. 
This means that the probability of an error exceeding 1% of the maximum input is less than 1%. 
The sampling frequency 1/h was set to 8 kHz to comply with the standard frequency of the A/C 
converter on the test DSK board equipped with the TMS320C6713 signal processor from Texas 
Instruments. The 16-bit resolution of this converter was modelled using the quantizer block from 
Simulink. 

 
 

Fig. 15. Generation of signals processed by the corrector 
 
We implemented the corrector shown in Fig.15 in MATLAB/Simulink v.7 and then we generated 
a machine code for the TMS signal processor using the Embedded Target for TI C6000 DSP tool. 
In the code we also implemented a 3rd-order digital Butterworth filter with the passband 
f-3dB/(1/2fs) = 0.1 to reduce the disturbances at the corrector input signal. It was also assumed that 
the order of the adaptive filters is 1 and the forgetting factor λ = 0.98. Examples of the signals 
from simulation of the system are shown in Fig.16.  

 



 
Fig. 16. Examples of output signals from the main sensor, auxiliary sensor and the main corrector. 

 
They were obtained for the following parameters of the sensors: NTp = 5ms, c=3, b/NTp = −0,5. 
The ratio h/NTp satisfies condition (18). The waveforms in Fig.16 represent the „steady-state” 
because an initial period, when the corrector was tuning to the sensors’ dynamics, is omitted. We 
can see an increase of the amplitude of the corrector output signal tTKg(n) and a decrease of its 
phase shift with respect to the main sensor signal tTg(n). However, the effect of the correction is 
limited due to the presence of the lowpass filter in the processing path, applying the linear 
corrector to the nonlinear sensors (models), errors of the identification method and numerical 
errors. 
 

SUMMARY 
 

The subject matter discussed in this work belongs to the dynamic metrology domain. The 
determination of the dynamic properties of the thermometer makes a significant reduction of the 
measurement error of the temperature either in steady state or arbitrarily varying in time possible. 
The accurate measurement of the temperature transforms into better control of a manufacturing 
process and better quality of products or rarer faults of power systems. The presented models and 
correction systems are in many ways universal so they can be applied, after modifications 
connected with specific operating conditions, in measurements of other physical quantities where 
the dynamics of sensors plays an important role. More information on the pulsatory method, 
mentioned in Fig.5 and omitted in this work, can be found e.g. in [1, 9]. 
 

NOTATION 
 
T - temperature, K 
t - temperature, °C 

Θ  -  temperature increment, K, °C 
m - mass, kg 
cp - specific heat, W⋅s/(kg⋅K) 
λ - thermal conductivity, W/(m⋅K) 
α - heat transfer coefficient, W/(m2⋅K) 

τ - time, s 
N - time constant, s 
N(t) - dynamic parameter, s  
h - time increment, discretization step, s 
d - diameter, mm 
ρ - density, kg/m3 
F - area, m2 



 
Subscripts: 
T - thermometer, 
K - corrector, 

TK - processing path thermometer-corrector, 
g - main, 
p - auxiliary, initial, 
m - maximum, steady. 
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DYNAMIKA STYKOWYCH CZUJNIKÓW TERMOMETRYCZNYCH O ELEKTRYCZNYM SYGNALE 
WYJŚCIOWYM I METODY JEJ POPRAWY 

 
Streszczenie  

 
W artykule przedstawiono wybrane zagadnienia dotyczące modelowania właściwości dynamicznych stykowych 

czujników termometrycznych oraz sposobami zmniejszania błędu dynamicznego występującego w pomiarze 
temperatury zmiennej w czasie oraz w trakcie ustalania się wskazań czujnika w pomiarze temperatury ustalonej. Ze 
względu na ograniczenia objętościowe powodujące konieczność pobieżnego przedstawienia pewnych zagadnień 



niniejszy artykuł ma jedynie charakter poglądowy. Próbę szerszego opracowania tematycznego, zawierającego 
również wyniki prac własnych wraz z bogatą bibliografią podjęto w monografii autorów [1]. 


