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The paper compares nine methods of measurement of the phase difference of digitized sinusoidal signals 
mainly according to their sensitivity to sampling non-integer number of signal periods. The investigated methods 
can be classified into four groups - modifications of classical zero-crossing based measurements, virtual vector 
voltmeter, DFT-based measurements, and modifications of sine-wave fit algorithm. Results of both simulations 
and measurements are presented. 
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1. INTRODUCTION 
 

This paper is enlarged and updated version of [1]. Measurement of phase difference of two 
harmonic signals is used e.g. by measurement of phase frequency characteristics of linear 
circuits or measurement of impedances. The classical approach is based on detection of zero 
crossings of signals [2, 3]. Other methods are based on virtual vector voltmeter, on DFT (e.g. 
[4]) and on sine-wave-fit algorithms (e.g. [5]). Altogether 9 methods based on the above 
mentioned principles were investigated. The methods are compared primarily from the points 
of view of their sensitivity to sampling non-integer number of signal periods (“non-coherent 
sampling”). The paper is in a sense a continuation of [6] where comparison was based on 
coherent sampling only and windowed and interpolated DFT [7, 8] and a recently published 
modification of sine-wave-fit [11] were not included. MATLAB environment was used for 
both simulations and measurements.  
 
 

2. THE INVESTIGATED METHODS 
 

2.1. Methods based on zero-crossings detection (ZCRF and ZCRR) 
 

These methods are based on the classical phase difference estimation algorithm.  
Detections of crossing a zero level by both the measured signals is used for phase difference 
estimation e.g. using universal counters or dual-channel oscilloscopes. Its principle is shown 
in Fig. 1 and in relation (1). Local linear interpolation around zero crossings (between two 
signal samples with different signs) allows resolution increase. Signal pre-processing before 
detection of crossings of zero level is often required in practice to prevent additional zero-
crossings caused by additive noise and/or signal higher harmonic components.  
 



 
Fig. 1. Principle of phase difference estimation by zero crossings detection. 

 
We have investigated two types of this signal pre-processing – LP filtering (using IIR or 

FIR digital filters) and moving averaging (method denoted here “ZCRF” - stands for “Zero 
CRossing with Filtration”) or moving average and linear regression in surroundings of zero 
crossings (method “ZCRR”, abbreviation of “Zero-CRossing with Regression”). 
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2.2. Method based on virtual vector-voltmeter (VVV) 

 
This method uses multiplication of the signal by a reference signal (sinusoid of the same 

frequency as frequency of the measured signals) and finding mean value (DC component) of 
this product. This mean value is proportional to cosine of the phase difference between the 
fundamental harmonic component of the measured signal and the reference signal, the phase 
shift of which is considered to be zero. This mean gives also the real part of the phasor 
(vector) of the measured signal. Multiplying the signal by cosine reference signal (i.e. 
reference signal shifted by 90° with reference to the first one) and finding the mean (e.g. by 
low-pass filter) gives the imaginary part of the phasor U1 of measured signal. Phase difference 
of the measured signal and the reference signal can be found afterwards by means of 
arctg(ImU1/ReU1) function. Using the same procedure for the second measured signal allows 
finding the phase difference between the second signal and the reference signal. Difference of 
phase shifts of the two signals referred to reference signal is the measured phase difference 
(phase difference of their fundamental harmonic components in case of sinusoidal signals 
distorted by higher harmonic components). The both signals’ amplitudes are found together 
with phase difference. The just described procedure can be expressed by the equations below. 
The two measured signals (continuous in time) an be written as 
 
 ( )111 sin)( ϕω += tVtv sig , (2) 
 
 ( )222 sin)( ϕω += tVtv sig , (3) 
 
where V1, ϕ1, and V2, ϕ2 are the unknown magnitudes and phases of the first and the second 
signal, and the ωsig = 2πfsig is a signal circular frequency. 
Time-discrete version of these signals are  
 
 ( )111 sin)( ϕω += nTVnTv sig , (4) 
 
 ( )222 sin)( ϕω += nTVnTv sig , (5) 



where T is sampling interval (T=1/fs,  fs being sampling frequency). 
The two (discrete-time) reference signals have the same frequency as the measured signals 
and can be expressed as 
 
 ( )nTVnTv sigRR ωsin)(1 = , (6) 
 
 ( )nTVnTv sigRR ωcos)(2 = . (7) 
 
The four mean values of the products of input signals v1(t) and v2(t) with the reference signals 
vR1(t) and vR1(t) are 
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where N is the total number of sampled values of each signal. These values are proportional to 
the real (V12 and V22) and to the imaginary (V11 and V21) parts of the sinusoidal input signal 
voltage phasors (vectors) V1 and V2. The phases of the two input signal voltages can be found 
as 
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The phase difference to be found is 
 12 ϕϕϕ −= . (14) 
 

The phases of the two phasors are from (12) and (13) found correctly, if integer number of 
signal periods id sampled. Bias of measurement of phase difference occurs in (14), if 
condition of coherent sampling N T = m Tsig (m being positive integer number) is not fulfilled. 
In that case the mean values in (8) to (11) are not calculated from integer number of signal 
periods and differ from the mean value across one period. 
 
 
 



2.3. Methods based on DFT (DFT, IDFT) 
 

The well-known Discrete Fourier Transform algorithm is computed for N signal samples 
(N is DFT length). The DFT spectrum is periodical spectrum with period N and it is discrete 
in frequency. 

If the measured signal is finite in time (e.g. a selected part of time-discrete signal of the 
length NT, as in our case), the DFT spectrum X(k) can be found by sampling the spectrum 
found by definition from infinitely long sequence of signal samples by the so-called Fourier 
Transform of Discrete Signals - FTD (called also Discrete-Time Fourier Transform - DTFT) 
X(ejωT)[14]. This spectrum is continuous function of circular frequency ω periodic with period 
equal to sampling circular frequency ωs, and the argument in the FTD spectrum X(ejωT) 
stresses this periodicity. DFT spectrum is (contrary to FTD spectrum) discrete in frequency 
and consists of samples of the FTD spectrum in values of circular frequencies ωk = k×(ωs/N), 
ωs being sampling circular frequency. 

The phase difference between fundamental harmonic components of the two measured 
signals is found as the phase difference of the fundamental harmonics DFT phase spectrum 
values (method “DFT”) of the two measured signals. For sinusoidal signals there is only one 
non-zero spectral line in the basic DFT spectrum interval if integer number of periods is 
sampled. 

The FTD spectra of the discrete-time signals v1(nT) and v2(nT) (both of the length NT (s) 
are 
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where N is the number of processed samples, ωsig is signal circular frequency, and T is 
sampling interval. The two measured signals v1(nT) and v2(nT) are zero for 0 > n ≥ N. 
Since there is 
 
 ( ) ( ) ( )nTsinjnTcose sigsig

nTj sig ωωω −=− , (16) 
 
(14) can be re-written as 
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The DFT spectrum is formed by samples of the FTD spectrum at circular frequencies 
ωk = k×(ωs/N) and it can therefore be written as 
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The phase of the two sinusoidal signals vi(nT) ϕi, i = 1, 2, can be found as 
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Circular frequencies for which the DFT spectrum is calculated are k(ωs/N) (they form a so-
called „DFT grid”). That is why argument of reference signals in (12) and (13) (i.e. ωsignT) is 
identical with arguments of sine and cosine function in (19) i.e. there is ωsignT = (2π/N)nk. 
Processing of input samples by VVV and DFT method is therefore from mathematical point 
of few the same, and that is why the bias and standard deviations of those two methods give 
the same results. If not integer number of signal periods is sampled, there is identical nonzero 
bias of these algorithms. In the DFT spectrum the well known „leakage” effect takes place in 
this case and the spectrum of sinusoidal signal is composed of many nonzero spectral lines. 

The computing time of VVV and DFT algorithm might not be exactly the same, since e.g. 
DFT is in practice most frequently calculated usig FFT algorithms and not the DFT definition 
formula. The DFT computing time is therefore usually shorter than the VVV computing time.  

Owing to the spectral leakage in case of non-coherent sampling, signals are multiplied by 
windows and the so - called interpolated DFT is used [8]-[10]. Phase difference bias is lower 
by non-coherent sampling if interpolated DFT (denoted “IDFT” algorithm here) is used. By 
using interpolated DFT, the exact frequency of signal is found between positions of the two 
largest spectral components of amplitude frequency spectrum. The known spectrum of the 
used window is used for finding value of the frequency displacement, i.e. the decimal value of 
frequency that has to be added to the frequency of the first of two largest components of the 
amplitude frequency spectrum to get the signal frequency. Simplified formulae derived for 
given window used are applied for frequency finding. After having found the signal 
frequency, signal RMS value and phase can be found. The phase difference is found as 
difference of phases of the two measured signals. Hann window is used most frequently. We 
have used it in the simulations and measurements presented in this paper as well, even if our 
program allows using cosine windows of the order up to 4. The DFT is also in interpolated 
algorithms calculated using FFT algorithms. Signal frequency, amplitude and phase can be 
found using this method. 

Two other modifications of the DFT interpolated in frequency domain are described in [9] 
and [10]. Interpolation in frequency domain without signal windowing (i.e. using rectangular 
windows) is used in [9] In the recent paper of the same author [10] uses a more sophisticated 
interpolation formulae (up to three points interpolation), and Hann window can also be used. 
We have included the algorithm from [10] in our program, based on two-point interpolation 
and using Hann window. Comparison of measurement bias, type A standard measurement 
uncertainty and computing time of this method (denoted as “IDFTA”, for Interpolated DFT 
suggested by Prof. Agrez) with our interpolated DFT (usable for applying Rife-Vincent 
windows of the first class and interpolation formula from [8]) is presented in part IV devoted 
to simulations. 
 

2.4. Methods based on sine-wave-fits (SWFM, SWF3p, SWFF4p, SWFR) 
 

A powerful tool for phase difference measurement are the sine-wave-fit techniques, based 
on least-square error (LSE) between (the samples of) the measured signal and (samples of) an 
ideal sinusoid. This sinusoid is characterized by 3 (magnitude, frequency and phase) or 4 
(nonzero DC component added) parameters found for getting minimum LSE. If applied on 
both the measured signals, phase difference is obtained as the difference of phases of the both 
measured signals. These methods can provide apart from phase also values of signal 
amplitude, frequency and in case of 4-parameter methods also the DC component, and are 
described in [5] (method designed especially for measurement of phase difference -“SWFM”) 
or in the standard [12] (realization of this method named here “SWFF3p” and “SWFF4p” use 
MATLAB function fminsearch for finding minimums of functions of several variables with 3 
or 4 parameters). Recently the 7-parameters sine-wave-fit modification supposing the same 



frequency of both signals and finding all 7 parameters of the two sinusoids with identical 
frequency was published [11] (method denoted here as “SWFR”). All 7 parameters are being 
found in a common iteration process, and this method is compared in [11] with 3 and/or 4 
parameter sine-wave-fit procedures applied separately to each measured signal. 

The SWFM and SWFR algorithms were found by us to be the best ones both from the 
point of accuracy and computation time (if implemented in MATLAB). A brief information 
about their mathematical background (presented in more detailed way in [5] and [11]) is given 
here. 

The sine-wave-fit algorithm proposed by R. Micheletti [5] (denoted here as SWFM 
algorithm) is the least-square-error based algorithm, allowing finding parameters (magnitude 
and phase) of a sinusoidal waveform placed on a sequence of signal samples. The algorithm is 
applied on sequences of samples of two sinusoidal signals ν1(t) and ν2(t) (mixed in practice 
with additive noise). The signals are sampled at the same sampling frequency fS and M 
samples of each signals is taken. The same frequency and zero DC components are supposed 
by both the signals the phase difference of which is to be found. The procedure described in 
[5] is as follows. 

The two processed signals are given in (1) and (2) and can be re-written as 
 
 tCtCtVtVtv ⋅ω+⋅ω=⋅ω⋅ϕ+⋅ω⋅ϕ= cossincossinsincos)( 1011111 , (20) 
 
 tDtDtVtVtv ⋅ω+⋅ω=⋅ω⋅ϕ+⋅ω⋅ϕ= cossincossinsincos)( 1022222 , (21) 
where 
 
 220110 coscos ϕϕ VDVC == , (22) 
 
 221111 sinsin ϕϕ VDVC ==  (23) 
and 
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Using the LSE algorithm, parameters Cj, Dj (j=1 or 2) can be found using the equations  
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where Φ0(t) = sinω t a Φ1(t) = cosω t, and 
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where rtv (1 ) and )(2 rtv are discrete-time samples of the two sinusoidal signals, and i = 1 or 2.  
These equations can be written in matrix form as 
 
 bAACA TT = , (30) 
 
 gAADA TT = , (31) 
where 
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Matrix AT A can be calculated in advance and stored in a table, since it depends only on 

samplinf frequency and number of samples per period. 
The phase difference of the two signals is found as 

 
 21 ϕ−ϕ=ϕ . (33) 
 

The 7-parameters sine-wave-fit method proposed by P.M.Ramos, F. Da Silva and A. Cruz 
Serra [11] (denoted here as SWFR algorithm) enables the user to find magnitudes, phases and 
DC components of two digitized sinusoidal signals of the same frequency, using again the 
LSE minimization algorithm. This method is an extension to the sine-wave-fit methods 
desribed in standard [12]. 

Here again the both measured signals are sampled at the sampling frequency fS and M 
samples is taken from each of the signals. Values of these samples are denoted y1,1, y1,2 ...y1,M 
for the first signal and y2,1, y2,2 ...y2,M for the second signal. Time instants in which the samples 
are taken are denoted tk,n , where k = 1, 2 denotes the signal, and n = 1, 2, ..., M is index of the 
sample. Contrary to the expressions for the processed signals (1) and (2), non-zero DC 
components of the signals are allowed here. 
The matrices used in the 7-parameter method are 
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 ( )fttfw π2cos),( = , 



 ( )fttfg π2sin),( = , (35) 
 
 ( ) ( )ftBtftAttfBAh ππ 2cos2sin),,,( +−= . 
 
The matrix used in iteration procedure in this method has 2M rows and 7 columns: 
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The resulting vector is  
 [ ]TCBAfCBAx 222111= , (39) 
 
where A and B define amplitude and phase of signals 1 and 2, C are DC components of these 
signals anf f is signal frequency, is found from the matrix equation 
 
 [ ] [ ]yDDDx TT 1−

= , (40) 
 
where D is matrix of the last iteration and DT je transposed matrix of the last iteration. 

Iteration finishing criterion is given by the chosen relative deviation of the frequency found 
in iteration process from the known signal frequency. In our algorithm implementation it was 

710−<ifδ . 
Besides the two above-described algorithms, we used also the MATLAB function 

fminsearch for finding the phase difference of the two measured sinusoidal signals 
represented by two sequences of signal samples (denoted in this paper as SWFF3p and 
SWFF4p). The functin fminsearch is designed for finding minimums of functions of several 
variables. It can be used with 3 or 4 parameters (modifications „3p” and „4p” of the SWFF) if 
used in sine-wave-fit applications. The „3p” version is used for input signals with zero DC 
component. The fminsearch function is much more generally usable than the two above 
mentioned single-task sine-wave-fit LSE algorithms. Its mathematical background is much 
more complicated and is only briefly mentioned in MATLAB help. As was found by our 
experiments, using this function needs much higher computation time, and for the 
approximately the same accuracy also much higher number of processed samples than the 
SWFM and SWFR algorithms. 
 
 



3. GRAPHICAL USER INTERFACE USED 
 

Since many simulations and measurements had to be performed for comparison of the 
sensitivity of the above mentioned methods to different influences, a graphical user interface 
was designed in MATLAB allowing easy modification of parameters of signals, range and 
resolution of the ADC (in simulations), number of signal samples processed and sampling 
frequency (desired non-integer number of periods can be selected), noising the signals by 
additive noise for selected SNR and distorting signals with higher-order harmonic 
components (up to the order 50, with random phases and magnitudes related to the 
fundamental harmonic components according to compatibility levels given by the 
international LF EMC standards (e.g. [13])). This GUI allows selection of methods to be 
applied for given simulation or measurement and selection of quantity that should be used as 
independent variable for presentation of results. The output graphs can be easily modified in 
MATLAB, and 7 different output figures are at the user disposal after finishing the 
measurement or simulation.  
 
 

4. RESULTS OF SIMULATIONS 
 
Selected results allowing comparison of the investigated methods are presented here. The 
presented results of simulations and measurement allow comparison of algorithms from the 
point of view of their sensitivity to sampling of non-integer number of signal periods (“non-
coherent sampling”), sensitivity to additive noise, to signal THD (total harmonic distortion), 
and to non-zero DC component. Figures are shown for 12-bit signal quantization, both signals 
magnitudes 5 V, frequency 50 Hz and phase difference 50 deg, ADC range is 5 V. Number of 
repeated simulations was 1000, sampling frequency 6400 Hz (128 Sa/per). Fig. 2 to Fig. 7 are 
plotted for SNR = 70 dB, THD = 0.16 % (corresponding to the THD of the signals generated 
by the generator used in measurements – see section V), 128 Sa/per (sampling frequency 
6400 Hz) and for 2 to 12 periods sampled. The simulation results shown in Fig. 2 to Fig. 7 are 
grouped according to Section II into three groups (method VVV was added to DFT, since 
their results are identical; the reason of this was shown above). 
 

Fig. 2. Bias of ZCRR and ZCRF methods, 
SNR=70 dB. 

Fig. 3. Standard deviation of ZCRR and ZCRF 
methods, SNR=70 dB. 

 



Fig. 4. Bias of DFT, VVV and IDFT methods, 
SNR=70 dB. 

 

Fig. 5. Standard deviation of DFT, VVV and IDFT 
methods, SNR=70 dB. 

 
Fig. 6. Bias of SWFR and SWFM methods, 

SNR=70 dB. 
Fig. 7. Standard deviation of SWFR and SWFM 

methods, SNR=70 dB. 
 

The ZCRF method results for the first 10 periods sampled were ignored in processing to 
exclude the transient component of the filter output (see Fig. 2 and Fig. 3). 
 

 
Fig. 8. Bias of IDFT and IDFTA [10] methods. Fig. 9. Standard deviation of IDFT and IDFTA [10] 

methods. 
 



Fig. 10. Bias of investigated methods as a function 
of SNR (10.5 signal periods sampled, THD=5%). 

 

Fig. 11. Standard deviation as a function of SNR (10.5 
signal periods sampled, THD=5%). 

 
Fig. 12. Bias investigated methods as a function of 

THD (10.5 signal periods sampled). 
Fig. 13. Computing time of the investigated methods. 

 

 
Fig. 14. Influence of DC component on bias (one 

signal has 1 V DC component), all methods. 
Fig. 15. Influence of DC component (one signal has 

1 V DC component), without ZCRF, ZCRR and IDFT 
methods. 

 
 

5. RESULTS OF MEASUREMENTS 
 

Measurements were performed on two output signals of the generator HP 3245A. The both 
measured signals were sine signals with frequency 50 Hz, amplitudes 5 V. Their phase 
difference was set to 50 deg, number of measurements was 100. Peak-to-peak voltage was 
5 V, the THD of the generated sinusoidal signal is THD < 0.16 %. (Some measurements were 
performed using sinusoidal signals generated by two function/arbitrary generators Agilent 
33220A, equipped with external frequency reference and phase-locked loop options, allowing 
phase adjustment via computer interface. THD of generators is 0.04 %. These generators were 
found to generate less stable than the HP 3245A generator, and therefore measurement results 



gained from HP 3245A are presented here.) 
The measurement were performed for the SNR = 70 dB, so that they can be compared with 

the simulation results (Fig. 2 to Fig. 7). The additive noise was generated by software. The 
two measured signals were sampled by a 12-bit multifunction DAQ PC plug-in board 
National Instruments NI 6023E. The sampling rate 128 Sa/period (sampling frequency 
fs = 6400 Hz per channel was used). The plug-in board setting and signal sampling was 
controlled by means of Data Acquisition Toolbox of MATLAB.  

As can be seen from Fig. 22 and Fig. 23, bias of SWFF methods is larger than that of the 
other sine-wave fit methods (SWFM and SWFR) for given sampling frequency. The 
computation time of SWFF methods is much higher than the computation time of the rest of 
the investigated methods. For the used sampling with 128 Sa/per their results had bias about 
1.4 deg (see Fig. 22), which corresponds very good with the dependence of their results on 
sampling frequency (Fig. 23). Other methods with low bias are included in Fig. 23 to show 
what is the approximate value of the “true” phase difference. 
 

  
Fig. 16. Phase difference by ZCRR and ZCRF 

methods. 
Fig. 17. Standard deviation of ZCRR and ZCRF 

methods. 
 

  
Fig. 18. Phase measured by DFT, VVV and IDFT 

methods. 
Fig. 19. Standard deviation of measurements by DFT, 

VVV and IDFT methods. 

  
Fig. 20. Phase measured by SWFM and SWFR Fig. 21. Standard deviation of measurements by 



methods (THD = 0, SNR = 70 dB). SWFM and SWFR methods. 

  
 

Fig. 22. Phase difference by SWFF3p and SWFF4p 
methods, measurement (THD = 0, SNR = 70 dB). 

 
Fig. 23. Influence of number of samples on SWFF bias 

(phase difference is 50 deg, measurement). 
 

The figures 19 to 21 present the same methods as Figs. 2 to 7 for simulations, but since the 
true phase shift is not known in general by measurements (and the MATLAB program for 
measurement is respecting this fact), measured values of phase difference are presented here 
instead of the bias of the phase difference shown by simulations. 
 
 

6. CONCLUSIONS 
 

As can be seen from the figures above, methods DFT and VVV are not suitable for non-
coherent sampling (sampling not integer number of periods). Sensitivity of the DFT method 
to sampling non-integer number of periods (i.e. to leakage effect) is substantially reduced by 
signal windowing and interpolation (see IDFT and IDFTA method results). Bias caused by 
leakage is decreasing with number of periods sampled. The results of IDFT method shown in 
Fig. 4, Fig. 5, Fig. 18 and Fig. 19, Fig. 8 and Fig. 9 (together with IDFTA) are plotted for 
Hann window used. If higher-order windows were used for signal windowing in IDFT 
method, so many signal periods have to be sampled that the main lobes of window spectrum 
placed at frequencies of neighbouring signal harmonic components do not overlap. 

Computing time of IDFTA algorithm was found to be approximately five times shorter 
than computing time of IDFT algorithm, magnitude of bias of the IDFT and IDFTA is 
practically the same 

Methods DFT and VVV give the same results since mathematical processing of signal 
samples is in fact the same for these methods, as was derived in parts II B and II C. That is 
why the graphs of phase difference and standard deviations (type A standard uncertainties) of 
these methods overlap in all figures. The computing times of these methods may not be 
identical, as was explained in part II C, and since FFT algorithm is usually used in DFT 
calculation, DFT computing time is in most cases shorter than that of VVV (see e.g. Fig. 17). 

Method of ZCRF used with LP FIR filter to suppress the additive noise before zero-
crossing detections is usable in our implementation only for more than 10 periods sampled 
(see Fig. 2 and Fig. 3) to exclude the filter output transient. A slight modification of this 
algorithm allows subtracting mean of the filter output signal 

The presented results of simulations and measurements show that from the point of view of 
measurement bias the sequence of the investigated methods is for non-coherent sampling for 
the same sampling frequency and number of samples ordered from the best one to the worst 
one following: SWFR, SWFM, ZCRR, IDFT and IDFTA (depending on number of periods 
sampled and window order used in signal windowing), ZCRF, SWFF3p and SWFF4p. 

As can be seen from the figures above, from the point of view of measurement uncertainty 



(type A) the sequence of the investigated methods is for non-coherent sampling is similar to 
the sequence ordered by phase bias. 

From the point of view of computation time (programmed in MATLAB) the sequence of 
the investigated methods is approximately (from the best one to the worst one, computation 
times given in relative scale): SWFM (1), DFT (1.1), VVV (1.6), IDFTA(7), SWFR (11), 
ZCRF (16), IDFT (36), ZCRR (59), SWFF3p (350), SWFF4p (610). The slowest – SWFF - 
methods require moreover larger numbers of samples to reach bias comparable to other 
methods (see Fig. 14 and Fig. 15). 

Sensitivity of the investigated methods to the additive noise can be from Fig. 10 and 
Fig. 11. Methods ZCRF, ZCRR and IDFT are most sensitive to additive noise (to SNR), 
methods SWFR, SWFM and  DFT are the least sensitive to SNR.  

Sensitivity of investigated methods oh harmonic distortion of measured signals (on THD) 
can be seen fro Fig.12: The most sensitive methods are ZCRF, ZCRR, IDFT, and both SWFF 
methods, the best methods here are SWFR, SWFM. DFT and VVV. 

Sensitivity of methods to nonzero DC component was tested by adding a DC component 
1 V to one of the measured signals. Influence of this component on the pfase difference bias 
can be seen from Fi. 14 and Fig. 15: The most sensitive are methods ZCRF, ZCRR, SWFF3p 
and IDFT (bias of DFT and VVV methods in this figure is caused by nen-coherent sampling, 
not by a DC component), methods with lowest sensitivity to DC components are (as can be 
expected because of their principle) the SWFR and SWFF4p. 

It follows from the information given above that the sine-wave-fit methods SWFR [11] and 
SWFM [5] are the best ones from the compared methods from the point of view of both 
measurement bias and type A uncertainty, both for sampling integer and non-integer number 
of periods. The SWFM method is at the same time the fastest one (by programming the 
methods in MATLAB), but contrary to SWFR it is sensitive to the signal DC component (see 
Fig. 14 and Fig. 15). 
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CYFROWY POMIAR PRZESUNIĘCIA FAZOWEGO –  
STUDIUM PORÓWNAWCZE ALGORYTMÓW CPS 

 
Streszczenie  

 
W artykule porównano 10 metod pomiaru przesunięcia fazowego pod względem ich wrażliwości na nie- 

całkowitą liczbę próbek w okresie sygnału. Rozpatrywane metody zostały podzielone na 4 grupy – 
zmodyfikowane metody oparte na detekcji przejścia przez zero, pomiary bazujące na DFT, metody wirtualnego 
woltomierza wektorowego i zmodyfikowane algorytmy dopasowania przebiegów sinusoidalnych. Przedstawiono 
wyniki symulacji i pomiarów. 
 


