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DIGITAL MEASUREMENT OF PHASE DIFFERENCE - A COMPARATIVE STUDY OF
DSP ALGORITHMS

The paper compares nine methods of measurement of the phase difference of digitized sinusoidal signals
mainly according to their sensitivity to sampling non-integer number of signal periods. The investigated methods
can be classified into four groups - modifications of classical zero-crossing based measurements, virtual vector
voltmeter, DFT-based measurements, and modifications of sine-wave fit algorithm. Results of both simulations
and measurements are presented.
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1. INTRODUCTION

This paper is enlarged and updated version of [1]. Measurement of phase difference of two
harmonic signals is used e.g. by measurement of phase frequency characteristics of linear
circuits or measurement of impedances. The classical approach is based on detection of zero
crossings of signals [2, 3]. Other methods are based on virtual vector voltmeter, on DFT (e.g.
[4]) and on sine-wave-fit algorithms (e.g. [5]). Altogether 9 methods based on the above
mentioned principles were investigated. The methods are compared primarily from the points
of view of their sensitivity to sampling non-integer number of signal periods (“non-coherent
sampling”). The paper is in a sense a continuation of [6] where comparison was based on
coherent sampling only and windowed and interpolated DFT [7, 8] and a recently published
modification of sine-wave-fit [11] were not included. MATLAB environment was used for
both simulations and measurements.

2. THE INVESTIGATED METHODS
2.1. Methods based on zero-crossings detection (ZCRF and ZCRR)

These methods are based on the classical phase difference estimation algorithm.
Detections of crossing a zero level by both the measured signals is used for phase difference
estimation e.g. using universal counters or dual-channel oscilloscopes. Its principle is shown
in Fig. 1 and in relation (1). Local linear interpolation around zero crossings (between two
signal samples with different signs) allows resolution increase. Signal pre-processing before
detection of crossings of zero level is often required in practice to prevent additional zero-
crossings caused by additive noise and/or signal higher harmonic components.
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Fig. 1. Principle of phase difference estimation by zero crossings detection.

We have investigated two types of this signal pre-processing — LP filtering (using IIR or
FIR digital filters) and moving averaging (method denoted here “ZCRF” - stands for “Zero
CRossing with Filtration”) or moving average and linear regression in surroundings of zero
crossings (method “ZCRR?”, abbreviation of “Zero-CRossing with Regression”).
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2.2. Method based on virtual vector-voltmeter (VVV)

This method uses multiplication of the signal by a reference signal (sinusoid of the same
frequency as frequency of the measured signals) and finding mean value (DC component) of
this product. This mean value is proportional to cosine of the phase difference between the
fundamental harmonic component of the measured signal and the reference signal, the phase
shift of which is considered to be zero. This mean gives also the real part of the phasor
(vector) of the measured signal. Multiplying the signal by cosine reference signal (i.e.
reference signal shifted by 90° with reference to the first one) and finding the mean (e.g. by
low-pass filter) gives the imaginary part of the phasor U; of measured signal. Phase difference
of the measured signal and the reference signal can be found afterwards by means of
arctg(ImU,/ReU)) function. Using the same procedure for the second measured signal allows
finding the phase difference between the second signal and the reference signal. Difference of
phase shifts of the two signals referred to reference signal is the measured phase difference
(phase difference of their fundamental harmonic components in case of sinusoidal signals
distorted by higher harmonic components). The both signals’ amplitudes are found together
with phase difference. The just described procedure can be expressed by the equations below.
The two measured signals (continuous in time) an be written as

v =V sin(a)sigt + ¢, ), 2)
VZ (t) = VZ Sin(a)sigt + ¢)2 )7 (3)

where V1, ¢, and V5, @, are the unknown magnitudes and phases of the first and the second
signal, and the @y, = 27f5, 1s a signal circular frequency.
Time-discrete version of these signals are

v (nT) =V, sin(a)signT + @, ) R “)

vo(nT) =V, sin( S[gnT + goz), (5)



where T is sampling interval (7=1/f;, f;being sampling frequency).

The two (discrete-time) reference signals have the same frequency as the measured signals
and can be expressed as

signT), (6)

v (nT)=Vg sin(a)

SignT). (7)

Vpo (nT) =V cos(a)

The four mean values of the products of input signals v;(¢) and v,(¢) with the reference signals
vri1(?) and vg(7) are
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Fio = L0 (T (1), )
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Vip = % Zvl (nT)vgy(nT), )

n=0

1 N-1

Var = W Z"z (nT)vg (nT), (10)

n=0
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Vs :%sz(nT)sz(nT), (11)

n=0

where N is the total number of sampled values of each signal. These values are proportional to
the real (V12 and V) and to the imaginary (¥, and V%) parts of the sinusoidal input signal
voltage phasors (vectors) V7 and V>. The phases of the two input signal voltages can be found
as

1 N-1 N-1
I (V ) N vi(nT)vg (nT) Zvl (nT)vg(nT)
o =arcig RI:(VI) = arclg 1 ],\l/i? = arcig ]V\l]=_(1) > (12)
1 v 2N DV (nT) > v (nT)v, (nT)
n=0 n=0
c N-1 N-1
m(v,) v 222 (1T)ve (nT) 2 va(nT)vp (nT)
@, = arctg R (Vz) = arctg ;i? = arctg Zi(l) . (13)
? | 2 v (T () > vy (nT)v gy (nT)
n=0 n=0
The phase difference to be found is
P=0r -0y (14)

The phases of the two phasors are from (12) and (13) found correctly, if integer number of
signal periods id sampled. Bias of measurement of phase difference occurs in (14), if
condition of coherent sampling N T' = m T;; (m being positive integer number) is not fulfilled.
In that case the mean values in (8) to (11) are not calculated from integer number of signal
periods and differ from the mean value across one period.



2.3. Methods based on DFT (DFT, IDFT)

The well-known Discrete Fourier Transform algorithm is computed for N signal samples
(N is DFT length). The DFT spectrum is periodical spectrum with period N and it is discrete
in frequency.

If the measured signal is finite in time (e.g. a selected part of time-discrete signal of the
length NT, as in our case), the DFT spectrum X(k) can be found by sampling the spectrum
found by definition from infinitely long sequence of signal samples by the so-called Fourier
Transform of Discrete Signals - FTD (called also Discrete-Time Fourier Transform - DTFT)
X(°")[14]. This spectrum is continuous function of circular frequency o periodic with period
equal to sampling circular frequency ws, and the argument in the FTD spectrum X(¢'")
stresses this periodicity. DFT spectrum is (contrary to FTD spectrum) discrete in frequency
and consists of samples of the FTD spectrum in values of circular frequencies my = kx(®y/N),
s being sampling circular frequency.

The phase difference between fundamental harmonic components of the two measured
signals is found as the phase difference of the fundamental harmonics DFT phase spectrum
values (method “DFT”) of the two measured signals. For sinusoidal signals there is only one
non-zero spectral line in the basic DFT spectrum interval if integer number of periods is
sampled.

The FTD spectra of the discrete-time signals vi(n7) and vo(nT) (both of the length NT (s)

arc
—J@sign T

V(/a)T) ZV()’!T) —JasignT Zv(nT)e i=lor2, (15)

n=—o0 n=0
where N is the number of processed samples, o, 1s signal circular frequency, and T is

sampling interval. The two measured signals v;(nT) and v,(nT) are zero for 0 >n > N.
Since there is
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(14) can be re-written as
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The DFT spectrum is formed by samples of the FTD spectrum at circular frequencies
ok = kx(wg/N) and it can therefore be written as
ko
— jsin . . 18
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The phase of the two sinusoidal signals v{(nT) ¢;, i = 1, 2, can be found as
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Circular frequencies for which the DFT spectrum is calculated are k(ws/N) (they form a so-
called ,,DFT grid”). That is why argument of reference signals in (12) and (13) (i.e. sgnT) 1s
identical with arguments of sine and cosine function in (19) i.e. there is wgnT = (27/N)nk.
Processing of input samples by VVV and DFT method is therefore from mathematical point
of few the same, and that is why the bias and standard deviations of those two methods give
the same results. If not integer number of signal periods is sampled, there is identical nonzero
bias of these algorithms. In the DFT spectrum the well known ,,leakage” effect takes place in
this case and the spectrum of sinusoidal signal is composed of many nonzero spectral lines.

The computing time of VVV and DFT algorithm might not be exactly the same, since e.g.
DFT is in practice most frequently calculated usig FFT algorithms and not the DFT definition
formula. The DFT computing time is therefore usually shorter than the VVV computing time.

Owing to the spectral leakage in case of non-coherent sampling, signals are multiplied by
windows and the so - called interpolated DFT is used [8]-[10]. Phase difference bias is lower
by non-coherent sampling if interpolated DFT (denoted “IDFT” algorithm here) is used. By
using interpolated DFT, the exact frequency of signal is found between positions of the two
largest spectral components of amplitude frequency spectrum. The known spectrum of the
used window is used for finding value of the frequency displacement, i.e. the decimal value of
frequency that has to be added to the frequency of the first of two largest components of the
amplitude frequency spectrum to get the signal frequency. Simplified formulae derived for
given window used are applied for frequency finding. After having found the signal
frequency, signal RMS value and phase can be found. The phase difference is found as
difference of phases of the two measured signals. Hann window is used most frequently. We
have used it in the simulations and measurements presented in this paper as well, even if our
program allows using cosine windows of the order up to 4. The DFT is also in interpolated
algorithms calculated using FFT algorithms. Signal frequency, amplitude and phase can be
found using this method.

Two other modifications of the DFT interpolated in frequency domain are described in [9]
and [10]. Interpolation in frequency domain without signal windowing (i.e. using rectangular
windows) is used in [9] In the recent paper of the same author [10] uses a more sophisticated
interpolation formulae (up to three points interpolation), and Hann window can also be used.
We have included the algorithm from [10] in our program, based on two-point interpolation
and using Hann window. Comparison of measurement bias, type A standard measurement
uncertainty and computing time of this method (denoted as “IDFTA”, for Interpolated DFT
suggested by Prof. Agrez) with our interpolated DFT (usable for applying Rife-Vincent
windows of the first class and interpolation formula from [8]) is presented in part IV devoted
to simulations.

2.4. Methods based on sine-wave-fits (SWFM, SWF3p, SWFF4p, SWFR)

A powerful tool for phase difference measurement are the sine-wave-fit techniques, based
on least-square error (LSE) between (the samples of) the measured signal and (samples of) an
ideal sinusoid. This sinusoid is characterized by 3 (magnitude, frequency and phase) or 4
(nonzero DC component added) parameters found for getting minimum LSE. If applied on
both the measured signals, phase difference is obtained as the difference of phases of the both
measured signals. These methods can provide apart from phase also values of signal
amplitude, frequency and in case of 4-parameter methods also the DC component, and are
described in [5] (method designed especially for measurement of phase difference -“SWFM”)
or in the standard [12] (realization of this method named here “SWFF3p” and “SWFF4p” use
MATLAB function fminsearch for finding minimums of functions of several variables with 3
or 4 parameters). Recently the 7-parameters sine-wave-fit modification supposing the same



frequency of both signals and finding all 7 parameters of the two sinusoids with identical
frequency was published [11] (method denoted here as “SWFR”). All 7 parameters are being
found in a common iteration process, and this method is compared in [11] with 3 and/or 4
parameter sine-wave-fit procedures applied separately to each measured signal.

The SWFM and SWFR algorithms were found by us to be the best ones both from the
point of accuracy and computation time (if implemented in MATLAB). A brief information
about their mathematical background (presented in more detailed way in [5] and [11]) is given
here.

The sine-wave-fit algorithm proposed by R. Micheletti [5] (denoted here as SWFM
algorithm) is the least-square-error based algorithm, allowing finding parameters (magnitude
and phase) of a sinusoidal waveform placed on a sequence of signal samples. The algorithm is
applied on sequences of samples of two sinusoidal signals v,(f) and v,(¢) (mixed in practice
with additive noise). The signals are sampled at the same sampling frequency fs and M
samples of each signals is taken. The same frequency and zero DC components are supposed
by both the signals the phase difference of which is to be found. The procedure described in
[5] is as follows.

The two processed signals are given in (1) and (2) and can be re-written as

vi(t)=V,cosQ, -sin®-t+V;sing, -cos®-t=C,sinw-t+C, cos®-¢, (20)
v, (1) =V, cos@, -sinw-t+V,sing, -cos®-t = D,sin®-t+ D, cos®-1, (21)
where
Cy=V,cosp, D,=V,cosp,, (22)
C,=V;sing, D, =V,sing, (23)
and

e A e G @4)

1

V,=+D,> +D, , @, =tan" {%}+ [1-sgn(D, )]% (25)

1

Using the LSE algorithm, parameters C;, D; (j=1 or 2) can be found using the equations

PV 2
S Semo )| (0. 26)
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2815 00,000 | -
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where @y(f) = sinwta &\(f) = coswt, and

M-1 1 M-1
Z|:(Di(t’_)zcsq)s(tr ):|: Z(Di(tr)vl(tr)a (28)

s=0 r=0

=



M-1 1 M-1
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where v, (¢, ) and v, (¢, ) are discrete-time samples of the two sinusoidal signals, and i = 1 or 2.
These equations can be written in matrix form as

ATAC=A"b, (30)
ATAD=A"g, (1)
where
sinwt, coswt, vi(to) vy (to)
_ sinwt;, coswt, Co Cy b v () D~ D, o= v, (1)
’ C |’ ’ D, |’
sinwt,,_coswit,,_, vitayry) vy (tar 1)
and
M-1 1 M-1
Z:sin2 wt, 3 Zsin 20t,
T r= r=i
ATA= 1 A/;)—l M—lo : (32)
— ZSin 2wt, 20052 wt,
2 r=0 r=0

Matrix A" A can be calculated in advance and stored in a table, since it depends only on
samplinf frequency and number of samples per period.
The phase difference of the two signals is found as

P=¢,—9,. (33)

The 7-parameters sine-wave-fit method proposed by P.M.Ramos, F. Da Silva and A. Cruz
Serra [11] (denoted here as SWFR algorithm) enables the user to find magnitudes, phases and
DC components of two digitized sinusoidal signals of the same frequency, using again the
LSE minimization algorithm. This method is an extension to the sine-wave-fit methods
desribed in standard [12].

Here again the both measured signals are sampled at the sampling frequency fs and M
samples is taken from each of the signals. Values of these samples are denoted y1 1, yi2 ...y1m
for the first signal and y, 1, y2.2 ...y2.s for the second signal. Time instants in which the samples
are taken are denoted #,, where k = 1, 2 denotes the signal, and n =1, 2, ..., M is index of the
sample. Contrary to the expressions for the processed signals (1) and (2), non-zero DC
components of the signals are allowed here.

The matrices used in the 7-parameter method are

W(feiotk)  &xisten) 1 h(Ap Bty fristin)

D. - W(fkistkn)  &Sristen) 1 h(Ag iy Biios fristin)
ki — : : : :

Sl

; (34)

W kisten) & Skistina) 1 (At Byyiois freirtim)
where

w(f,t)= cos(27ﬁ) R



g(f>1) =sin(27f1), (35)
h(A,B, 1) = —Atsin(2ft )+ Bt cos(2ft) .

The matrix used in iteration procedure in this method has 2M rows and 7 columns:

R, 0
SR 39
where
W(fi’kk,l) g(fi’kk,l) 1
Qk,i _ W(fszkz) g(fzaka) 1 (37)
W(fiskk,M) g(fi»kk,M) 1
and
h(Ak,i—l B fistea )
Rk,i _ h<Ak,i—15Bk:,i—l’fi’tk,2) (38)
h(Ak,i—l ’Bk,i—l’fi’tM)
The resulting vector is
x= [Al B, C, f 4, B, Cz]T > (39)

where 4 and B define amplitude and phase of signals 1 and 2, C are DC components of these
signals anf f'is signal frequency, is found from the matrix equation

x=[p"p["[p7y], (40)

where D is matrix of the last iteration and D je transposed matrix of the last iteration.

Iteration finishing criterion is given by the chosen relative deviation of the frequency found
in iteration process from the known signal frequency. In our algorithm implementation it was
&, <1077,

Besides the two above-described algorithms, we used also the MATLAB function
fminsearch for finding the phase difference of the two measured sinusoidal signals
represented by two sequences of signal samples (denoted in this paper as SWFF3p and
SWFF4p). The functin fminsearch is designed for finding minimums of functions of several
variables. It can be used with 3 or 4 parameters (modifications ,,3p” and ,,4p” of the SWFF) if
used in sine-wave-fit applications. The ,,3p” version is used for input signals with zero DC
component. The fminsearch function is much more generally usable than the two above
mentioned single-task sine-wave-fit LSE algorithms. Its mathematical background is much
more complicated and is only briefly mentioned in MATLAB help. As was found by our
experiments, using this function needs much higher computation time, and for the
approximately the same accuracy also much higher number of processed samples than the
SWFM and SWFR algorithms.



3. GRAPHICAL USER INTERFACE USED

Since many simulations and measurements had to be performed for comparison of the
sensitivity of the above mentioned methods to different influences, a graphical user interface
was designed in MATLAB allowing easy modification of parameters of signals, range and
resolution of the ADC (in simulations), number of signal samples processed and sampling
frequency (desired non-integer number of periods can be selected), noising the signals by
additive noise for selected SNR and distorting signals with higher-order harmonic
components (up to the order 50, with random phases and magnitudes related to the
fundamental harmonic components according to compatibility levels given by the
international LF EMC standards (e.g. [13])). This GUI allows selection of methods to be
applied for given simulation or measurement and selection of quantity that should be used as
independent variable for presentation of results. The output graphs can be easily modified in
MATLAB, and 7 different output figures are at the user disposal after finishing the
measurement or simulation.

4. RESULTS OF SIMULATIONS

Selected results allowing comparison of the investigated methods are presented here. The
presented results of simulations and measurement allow comparison of algorithms from the
point of view of their sensitivity to sampling of non-integer number of signal periods (“non-
coherent sampling”), sensitivity to additive noise, to signal THD (total harmonic distortion),
and to non-zero DC component. Figures are shown for 12-bit signal quantization, both signals
magnitudes 5 V, frequency 50 Hz and phase difference 50 deg, ADC range is 5 V. Number of
repeated simulations was 1000, sampling frequency 6400 Hz (128 Sa/per). Fig. 2 to Fig. 7 are
plotted for SNR =70 dB, THD = 0.16 % (corresponding to the THD of the signals generated
by the generator used in measurements — see section V), 128 Sa/per (sampling frequency
6400 Hz) and for 2 to 12 periods sampled. The simulation results shown in Fig. 2 to Fig. 7 are
grouped according to Section II into three groups (method VVV was added to DFT, since
their results are identical; the reason of this was shown above).
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The ZCRF method results for the first 10 periods sampled were ignored in processing to
exclude the transient component of the filter output (see Fig. 2 and Fig. 3).
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5. RESULTS OF MEASUREMENTS

Measurements were performed on two output signals of the generator HP 3245A. The both
measured signals were sine signals with frequency 50 Hz, amplitudes 5 V. Their phase
difference was set to 50 deg, number of measurements was 100. Peak-to-peak voltage was
5V, the THD of the generated sinusoidal signal is THD < 0.16 %. (Some measurements were
performed using sinusoidal signals generated by two function/arbitrary generators Agilent
33220A, equipped with external frequency reference and phase-locked loop options, allowing
phase adjustment via computer interface. 7THD of generators is 0.04 %. These generators were
found to generate less stable than the HP 3245A generator, and therefore measurement results



gained from HP 3245A are presented here.)

The measurement were performed for the SNR = 70 dB, so that they can be compared with
the simulation results (Fig. 2 to Fig. 7). The additive noise was generated by software. The
two measured signals were sampled by a 12-bit multifunction DAQ PC plug-in board
National Instruments NI 6023E. The sampling rate 128 Sa/period (sampling frequency
f;=6400 Hz per channel was used). The plug-in board setting and signal sampling was
controlled by means of Data Acquisition Toolbox of MATLAB.

As can be seen from Fig. 22 and Fig. 23, bias of SWFF methods is larger than that of the
other sine-wave fit methods (SWFM and SWFR) for given sampling frequency. The
computation time of SWFF methods is much higher than the computation time of the rest of
the investigated methods. For the used sampling with 128 Sa/per their results had bias about
1.4 deg (see Fig. 22), which corresponds very good with the dependence of their results on
sampling frequency (Fig. 23). Other methods with low bias are included in Fig. 23 to show
what is the approximate value of the “true” phase difference.
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Fig. 20. Phase measured by SWFM and SWFR Fig. 21. Standard deviation of measurements by



methods (THD = 0, SNR =70 dB). SWFM and SWFR methods.
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Fig. 22. Phase difference by SWFF3p and SWFF4p  Fig. 23. Influence of number of samples on SWFF bias
methods, measurement (THD = 0, SNR = 70 dB). (phase difference is 50 deg, measurement).

The figures 19 to 21 present the same methods as Figs. 2 to 7 for simulations, but since the
true phase shift is not known in general by measurements (and the MATLAB program for
measurement is respecting this fact), measured values of phase difference are presented here
instead of the bias of the phase difference shown by simulations.

6. CONCLUSIONS

As can be seen from the figures above, methods DFT and VVV are not suitable for non-
coherent sampling (sampling not integer number of periods). Sensitivity of the DFT method
to sampling non-integer number of periods (i.e. to leakage effect) is substantially reduced by
signal windowing and interpolation (see IDFT and IDFTA method results). Bias caused by
leakage is decreasing with number of periods sampled. The results of IDFT method shown in
Fig. 4, Fig. 5, Fig. 18 and Fig. 19, Fig. 8 and Fig. 9 (together with IDFTA) are plotted for
Hann window used. If higher-order windows were used for signal windowing in IDFT
method, so many signal periods have to be sampled that the main lobes of window spectrum
placed at frequencies of neighbouring signal harmonic components do not overlap.

Computing time of IDFTA algorithm was found to be approximately five times shorter
than computing time of IDFT algorithm, magnitude of bias of the IDFT and IDFTA is
practically the same

Methods DFT and VVV give the same results since mathematical processing of signal
samples is in fact the same for these methods, as was derived in parts II B and II C. That is
why the graphs of phase difference and standard deviations (type A standard uncertainties) of
these methods overlap in all figures. The computing times of these methods may not be
identical, as was explained in part II C, and since FFT algorithm is usually used in DFT
calculation, DFT computing time is in most cases shorter than that of VVV (see e.g. Fig. 17).

Method of ZCRF used with LP FIR filter to suppress the additive noise before zero-
crossing detections is usable in our implementation only for more than 10 periods sampled
(see Fig. 2 and Fig. 3) to exclude the filter output transient. A slight modification of this
algorithm allows subtracting mean of the filter output signal

The presented results of simulations and measurements show that from the point of view of
measurement bias the sequence of the investigated methods is for non-coherent sampling for
the same sampling frequency and number of samples ordered from the best one to the worst
one following: SWFR, SWFM, ZCRR, IDFT and IDFTA (depending on number of periods
sampled and window order used in signal windowing), ZCRF, SWFF3p and SWFF4p.

As can be seen from the figures above, from the point of view of measurement uncertainty



(type A) the sequence of the investigated methods is for non-coherent sampling is similar to
the sequence ordered by phase bias.

From the point of view of computation time (programmed in MATLAB) the sequence of
the investigated methods is approximately (from the best one to the worst one, computation
times given in relative scale): SWFM (1), DFT (1.1), VVV (1.6), IDFTA(7), SWFR (11),
ZCRF (16), IDFT (36), ZCRR (59), SWFF3p (350), SWFF4p (610). The slowest — SWFF -
methods require moreover larger numbers of samples to reach bias comparable to other
methods (see Fig. 14 and Fig. 15).

Sensitivity of the investigated methods to the additive noise can be from Fig. 10 and
Fig. 11. Methods ZCRF, ZCRR and IDFT are most sensitive to additive noise (to SNR),
methods SWFR, SWFM and DFT are the least sensitive to SNR.

Sensitivity of investigated methods oh harmonic distortion of measured signals (on THD)
can be seen fro Fig.12: The most sensitive methods are ZCRF, ZCRR, IDFT, and both SWFF
methods, the best methods here are SWFR, SWFM. DFT and VVV.

Sensitivity of methods to nonzero DC component was tested by adding a DC component
1 V to one of the measured signals. Influence of this component on the pfase difference bias
can be seen from Fi. 14 and Fig. 15: The most sensitive are methods ZCRF, ZCRR, SWFF3p
and IDFT (bias of DFT and VVV methods in this figure is caused by nen-coherent sampling,
not by a DC component), methods with lowest sensitivity to DC components are (as can be
expected because of their principle) the SWFR and SWFF4p.

It follows from the information given above that the sine-wave-fit methods SWFR [11] and
SWEFM [5] are the best ones from the compared methods from the point of view of both
measurement bias and type A uncertainty, both for sampling integer and non-integer number
of periods. The SWFM method is at the same time the fastest one (by programming the
methods in MATLAB), but contrary to SWFR it is sensitive to the signal DC component (see
Fig. 14 and Fig. 15).
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CYFROWY POMIAR PRZESUNIECIA FAZOWEGO —
STUDIUM POROWNAWCZE ALGORYTMOW CPS

Streszczenie

W artykule poréwnano 10 metod pomiaru przesunigcia fazowego pod wzglegdem ich wrazliwosci na nie-
catkowita liczbg¢ probek w okresie sygnatu. Rozpatrywane metody zostaly podzielone na 4 grupy —
zmodyfikowane metody oparte na detekcji przejs$cia przez zero, pomiary bazujace na DFT, metody wirtualnego
woltomierza wektorowego i zmodyfikowane algorytmy dopasowania przebiegéw sinusoidalnych. Przedstawiono
wyniki symulacji i pomiarow.



