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ANALYSIS OF A THREE-VOLTMETER MEASUREMENT METHOD DESIGNED FOR 
LOW-FREQUENCY IMPEDANCE COMPARISONS  

 
 

 The principle of the three voltmeter method designed for precise impedance comparison is presented.  
Generalization of the classical approach is proposed and analysed. Formulas for impedance parameters 
determination are derived and measurement uncertainty analysed for various kinds of comparisons, and 
next optimal measurement conditions specified. Important voltmeter parameters, such as random error and 
non-linearity error, are experimentally investigated. The presented results show that by using the method 
and commercially available apparatus it is possible to compare two impedances with a relative uncertainty 
of (1-5)×10-6 in the low frequency range.  
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1. INTRODUCTION 
 
 In recent years a great improvement of digital voltmeter parameters is observed, such as 
accuracy, linearity, stability and frequency range. This progress is particularly evident in DC 
measurements but also a great step in improving AC measurements has been made. Although 
the linearity of precision AC digital voltmeters is still lower than that of inductive voltage 
dividers (IVD’s), it is high enough to be taken as a basis for development of impedance 
measurement systems more accurate than commercially available instruments. This is the case 
for the three-voltmeter method, already developed for  particular purposes [1, 2, 3], but 
suitable to generalisation.  
 In the paper properties of the three-voltmeter method are analysed. It is shown that two 
major problems make it difficult to construct a precise system based on the method and limit 
the scope of its application. The first one follows from the demand of precise voltage 
measurement that one point must be at low potential. This cannot be accomplished directly 
for all three measured voltages. The second one is inevitable stray impedance of the lead 
connecting both compared standards: measurement impedance and a reference impedance 
standard. To solve the first problem Cabiati proposed a solution [1], which applies an 
inductive voltage divider (IVD) set to a value of  0.5. It is possible to measure all three 
voltages with one end at a low potential without loosing accuracy, and for the second one the 
special circuit design to inject a current which compensates the stray parameters of the leads.   
 In the paper a new generalised approach is proposed, which uses the IVD set to any value k 
∈(0,1). This increases the method's flexibility and make it possible to find optimal 
measurement conditions for comparing various kinds of impedances, as for example 
inductance in reference to capacitance. The problem have been scrutinized and for various 
voltage ratios and various kinds of the compared impedances an optimal setting of the IVD 
has been found. Also a general measurement uncertainty analysis has been carried out and 
formulas derived for examination of particular measurement cases. Different hypotheses have 
been considered about the calibration of the voltmeters, such as: no special calibration of 



voltmeters and voltmeters with calibration of linearity. Important parameters of digital 
voltmeters: noise, linearity and stability have been investigated and values assessed. 
 
 

2. THE PRINCIPLE OF THE METHOD 
 
 The basic, simplified scheme of the three-voltmeter method designed for impedance 
comparison is presented in Fig. 1a). The same sinusoidal current, I = Imejωt, is driven through 
two compared impedances: the impedance under test Zx = Rx+jXx  (IUT) and the reference 
impedance standard Zs = Rs+jXs.  
 
 a)  b) 

 
 

Fig.1. The scheme of three voltmeters method applied for impedance comparison:  
a) the basic circuit; b) the vector diagram. 

 
To determine the relation between the impedance Zx (Rx, Xx) and the impedance Zs (Rs,Xs),  
three voltages Us = Us, Ux = Ux, and U = U are measured. A vector diagram of these 
voltages is presented in Fig. 1b), for the case of linear impedances. Analysing the relation 
between the measured voltages Us, Ux, U, the current I =I and the parameters Rx, Xx, Rs, Xs 
of the compared impedances we get the system of equations 
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where α = U/Us and αx = Ux/Us are relative voltages, referred to the voltage Us. By 
substituting the second equation to the first one we obtain the linear equation, with respect to 
Rx and Xx:  
  

RsRx + XsXx = αB (Rs
2 +Xs

2),    (1) 
 
where the coefficient αB is defined by the formula 
 

αB = (α2 - αx
2 - 1)/2.                             (2) 

 
 To obtain a second linear equation we compare the area A of the triangle P1OP2 calculated, 
by the Heron’s formula, directly from its legs, to its area calculated by subtracting from the 



area of the right triangle P1QP2 the areas of the right triangles P1Q1O, OQ2P2, P1OP2, and the 
rectangular OQ1QQ2. From this, after transformations, we get the second linear equation 
 

-XsRx + RsXx = αA(Rs
2 +Xs

2),             (3) 
 
where αA = 2A/Us

2 is a coefficient proportional to the area A, the value of which  can be 
calculated from the formula 
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The Equations (1) and (3) form a system of two linear equations and its solution provides 
formulas 
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for the parameters Rx and Xx, determination provided the parameters Rs and Xs of the reference 
impedance and voltages  Us, Ux, U, are known. The  formulas (5) are similar to those obtained 
by Cabiati et al. [1] and also resemble to a certain degree the balance equations of a 
Wheatstone type bridge. In the Wheatstone bridge, coefficients αA and αB are equal to the 
ratio of voltages, which are equal to ratios of  impedances, whereas in the three-voltmeter 
method the coefficients αA and αB are functions of squared ratio of voltages. As the result of 
this quadratic relation the comparison error depends on many agents and to obtain the highest 
accuracy the optimal measurement conditions should be assessed. This will be done farther in 
the paper.   
 
 

3. THE ACTUAL CONFIGURATION OF MEASUREMENT SYSTEMS 
 
 To apply this method for precise impedance comparison, two major problems should be 
solved: the first one is  precise measurement of the voltage U affected by a large common 
mode voltage and the second one is the influence of the stray impedance of the lead 
connecting the compared impedances. To solve the first problem Cabiati [1] connected the 
IVD between points P1 and P2, Fig.1, with voltage output to input ratio, k, set to 0.5 and 
measured the voltage UM between the output tap of the IVD and the ground (instead of the 
voltage U). 
 Let αM = UM /Us and αm = Um/Us = 2 UM /Us = 2αM be the relative voltages referred to the 
voltage Us. To determine the relation between α and αM (or between α and αm which is more 
convenient for further analysis) we compare the area A of the P1OP2 triangle to the area of the 
triangle P1OO'. Both areas are calculated by using Heron's formula. After some 
transformations we obtain the equation 
 

α2 = - αm
2 + 2 (1 + αx

2). 
  
Next, by substituting this formula to Eq. (2) we get a new formula for the αB coefficient 
 

αB = (1 + αx
2 - αm

2)/2.     (7) 



 
Similarly by using the Eq. (7) in (4) we get the new formula for αA 
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which is similar to (4). The only difference is that the coefficient α  has been substituted by 
αm. 
 To achieve high accuracy measurements, the compared impedances should work under 
conditions specified in the definition of the four port impedances, introduced by Cutkosky [4]. 
It is considered to be the most rigorous definition for shielded impedances or admittances 
equipped with four coaxial connectors [5]. In the four-port impedance, the voltage is defined 
at the high-voltage port in open circuit condition while the current is defined at the low-
voltage current port whose voltage is equal to  zero. One way of solving this problem,  
suggested by Cabiati [1], is based on using a current injection near the middle section of the 
yoke, which connects the compared impedances, to compensate the voltage drops on the 
conductors. This solved the problem but was inconvenient for operation and needed 
complicated manual adjustment. Poliano and others [2, 3] developed the solution which 
operates automatically, preserving high accuracy. However the solution is complicated.  
 
 

4. GENERALIZATION OF THE CIRCUIT WITH IVD 
 
 In the solution presented in [1] the IVD has the ratio of voltages k set to the value equal to 
k = 0.5 (the voltage U is divided by 2). We shall generalize this condition by letting the IVD 
to be set to any value of k between 0 and 1 and measuring the voltage Uk instead of UM (see 
Fig. 2). Now the task is how, knowing the voltages Us, Ux, Uk and the setting of k. 
 

  
Fig.2. Geometrical presentation of the generalised three voltmeter method.  

 
the IVD (or what is equivalent knowing relative voltages αx = Ux/Us, αk = Uk/Us, and k), to 
determine values of the coefficients αA and αB. The geometrical presentation of the problem, 
in the Gaussian plane, is shown in Fig. 2. The task can be stated geometrically as follows: 
given P1O= 1, OP2=αx, OP= αk and k = P1O/P1O find the relative voltage 
P1P2= α. 
 The complex number z satisfies equations 
 

z -1= αx ,                                    (9) 
kz-1= αk .                                  (10) 

 
Solving this system of equations of complex variables, with respect to α =z we obtain 
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Next, by setting this value to the Eq. (2) we get the general formula for αB 
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Similarly, applying the Eq. (12) to (8), after some transformation, we get the new general 
formula for αA

2  
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It can be easily checked that by setting for k the value k = 0.5 we get the formulas (7) and (8) 
as a particular case of the generalized approach.  
 The general formulas (5) for determination of the parameters Rx and Xx remain the same as 
for k = 0.5. The only difference is that now the coefficients αA and αB are calculated from 
generalized formulas (12) and (13). 
 
 

5. MEASUREMENT OF IMPEDANCES 
 
 The circuit is suitable for impedance comparisons. We shall now determine  formulas for 
measurement of particular impedances. We assume that the reference standard is the 
resistance and derived formulas for determination of resistors, inductors and capacitors. The 
measured impedance, IUT, will be presented in the two element series equivalent circuits:  
 
resistor: Zx = Rx +jωLx = Rx (1 + jωτx), where τx = Lx/Rx is the time constant, 
inductor:  Zx = jωLx + Rx = jωLx(1-j/Qx), where Qx = ωLx/Rx is the storage factor,   
capacitor: Zx =1/jωCx + Rx =(1 +j Dx)/jωCx, where Dx = ωRxCx is the dissipation factor. 
 
The impedance of the standard resistor is equal to Zs = Rs + jωLs = Rs(1 + jωτx), where 
τs = Ls/Rs is the time constant of the reference resistor.  It can be shown that parameters of the 
IUT can be determined from the formulas:  
 
resistor: 
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 The next problem is to assess the uncertainty of determination of these parameters  as 
functions of uncertainties of the voltage measurements . 
 
 

6. UNCERTAINTY ANALYSIS 
 
 The parameters Rx and Xx of the IUT are determined from the formulas (5) and its 
uncertainty depends mainly on uncertainties of determination of the coefficients αA and αB. 
The coefficients αA and αB are determined from: 
a) measurements of voltages Us, Ux, and U (or Um, UM), 
b) measurements of voltages ratios αx and α (or αm, αM).  
 The second case occurs when the linearity of voltmeters is calibrated, e.g. in reference to 
the IVD. We shall derive formulas for uncertainties for both mentioned conditions and next 
apply them for particular measurements.  
 The following notation is used: the absolute uncertainty of a quantity x is denoted by ∆x 
and the relative, by δx = ∆x/x. We derive formulas for uncertainties for the general 
configuration first and analyze the particular case when k = 0.5. 
 
 

6.1. Uncertainty of determination of αA  
 
 First, we consider case a) when voltages are measured. To assess the upper limit of the 
relative uncertainty δαA, we substitute αx=Ux/Us and αx=Um/Us into Eq. (13), calculate partial 
derivatives with respect to Ux, Us and Um and divide both sides of the equation by αA. From 
this we get the formula for the upper limit of relative uncertainty δαA. 
 To analyze how this uncertainty depends on the values of the compared impedances 
parameters it is essential to express formulas in terms of the compared impedance parameters, 
Rx, Xx and Rs (we assume that the reactance Xs of the reference impedance Zs is negligible in 
comparison to Rs). It can be proved that, under these conditions, the following equations hold: 
 

αA = x,  
αx

2 = r2 + x2,  

αm
2 = (1 - r)2 + x2

,                                                      (20) 
αk

2 = [k(1 + r) - 1]2 + k2 x2  
αB = r,  

 
where x = Xx/Rs is relative reactance referred to the resistance Rs and r = Rx/Rs is relative 
resistance referred to Rs. 



 By substituting them to the equation for the relative uncertainty δαA we get the following 
formula 
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for its  upper limit. In the case of independent measurements we can assess the value of δαA 
from the equation  
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 The respective formulas for case b), when αx, and αm are measured, can be obtained from 
case a) simply by substituting Us = 1 to the above formula. Then we get: αx = Ux/Us = Ux and 
αm = Um, and in  consequence δUs = 0, δUx = δαx and δUm = δαm, where δαx and δαm are 
uncertainties of determination of the voltage ratios αx and αm, respectively.  
 
 

6.2. Uncertainty of determination of αB  
 
 Using the same technique we can derive formulas for the uncertainty δαB for the case a) 
when voltages are measured and from this we get the formula 
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Now having these results we shall analyse particular cases of comparisons:  resistance versus 
resistance (Rx v. Rs). Inductance versus resistance (Lx v. Rs) and capacitance versus resistance 
(Cx v. Rs). We now discuss the problem in turns.  
 
 

6.3. Uncertainty of comparison Rx v. Rs 
 

 The value of Rx is calculated from formula (5). For the error analysis we consider only the 
main part of the right hand side of this equation, which means that  Rx ≅ αB Rs. Thus the 
relative uncertainty of determination of δRx of Rx  depends mainly on uncertainty δαB which 
is given by  Eq. (23). For typical conditions, when the resistor under test has a small time 
constant τx, and we can assume that x = Xx/Rs << 1, we get the assessment  
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     A graph of the relative uncertainty of comparison δRx of the Rx to Rs is for the case when 
voltages Us, Ux and UM are measured (k = 0.5) is presented in Fig. 3.  



 As seen, the uncertainty has a minimum for r equal approximately to 0.5. If, for instance, 
we assume that the comparison error should be smaller than 1.4 δU  then the ratio r = Rx/Rs 
should be within the interval (0.35, 1.5). 
 
 

              6.4. Uncertainty of comparison  of Lx v. Rs 
 
 The value of inductance is calculated from Eq. (14). We assume that the reference standard 
Rs has a very small (negligible) time constant, then the second term in the parentheses of the 
right hand side of (14) is very small and we can neglect it for the error analysis . Thus the 
value of inductance is determined from the simplified formula  
 

Lx = αA Rs/ω       (25) 
 
and  the relative uncertainty δLx is approximately equal to δαA (provided that δω, δRs << 
δαA).  
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Fig. 3. Relative uncertainty δRx of Rx v. Rs comparison, as a function of the of compared resistances ratio 
r = Rx/Rs. 

 
 We shall analyze the dependence of δαA on the ratio r of the compared elements. If the 
storage factor Qx is substantially larger than one (Qx >> 1) and the reactance of the IUT, Xx is 
of the same order of magnitude as Rs, then the ratio r = Rx/Rs is much smaller than 1 and the 
formula (22) for the uncertainty simplifies to the form 
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The uncertainty δαA depends mainly on uncertainties of measurements of voltages Ux and Us 
(or αx) . If the storage factor Qx is substantially smaller than one (Qx << 1 and r  << 1) then 
the first term  



  

10  
0

 10   1  
0   

1   

2   

3   

4   

5   

6   

x =X x/R s 

δ L x  [ppm]  

Q x  = 1   Q x = 1  

Q x  = 3   Q x = 3  

Q x  = 10   

Q x = 10   

 
 
Fig. 4. Uncertainty δLx of inductance determination as a function of x = ωLx/Rs for various values of the storage 

factor Qx and for δUs = δUx = δUM = 1ppm. 
 
in the square root of the above formula vanishes. The  uncertainty of determination of 
inductance Lx is approximately equal to the uncertainty of determination of the ratio 
αx = Ux/Us and does not depend on the value of Rs. However for inductance standards 
measured at low frequencies the storage factor Qx is small. For instance, for the often used 
GenRad inductance standards, type 1482, the value of the storage factor Qx is about 10 for a 
frequency of 1 kHz and can be even smaller than 1 for 100Hz. The uncertainty δLx depends, 
in this case, on the value of the reference standard Rs, Fig 4, and we can observe that for the 
large Qx values, the error is approximately constant - it does not depend on x = Xx/Rs but 
depends significantly on x for smaller Qx values. The minimal measurement error is obtained 
for x ≅ 1. Thus for the low values of storage factors it is important to refer the inductance Lx to 
such resistor Rs whose value satisfies the condition Rs ≅ ωLx. 
 
 

6.5. Uncertainty of comparison of Cx v. Rs  
 
 The formula for the determination of capacitance Cx is given by (18). For the error analysis 
we shall consider only the main part of the denominator, then Cx ≅ 1/(ωαBRs). The relative 
uncertainty δCx is approximately equal to δαB (uncertainty δω is negligible and Rs is the 
reference standard value). Dissipation factor, D, of real capacitors satisfies the condition 
D ≤ (2-4)×10-4 and from this we have r << 1 and r << x. Then the value of uncertainty, δCx, 
for the low value of the dissipation factor, is simply given by the formula δCx ≅ δαB ≅ δαx 
(see Eq. (12)). 
 From the above analysis we can draw two major conclusions: that in the case of 
capacitance measurements in reference to resistance the voltage Um (and Uk) can be measured 
with much lower accuracy than the other voltages, and that the uncertainty of determination 
of δαB depends directly on uncertainties of determination of voltages Ux and Us (or the ratio 
αB). 
 
 
 



 
7. OPTIMIZATION OF MEASUREMENT CONDITIONS 

 
 The uncertainty of comparison depends on the value of the IVD setting k (see (22) and 
(23)). We shall analyze now how to chose a value of k in particular measurements. 
 
 

7.1. Choice of optimal k in inductance and capacitance measurements 
 
 The uncertainty of inductance and capacitance measurements is approximately equal to 
uncertainty δαA of determination of the coefficient αA. In measurements of capacitors with a 
low dissipation factor, Dx, values and inductors with a high value of the storage factor Qx, the 
coefficient r is very small, r << 1, and uncertainty δαA simplifies to the formula 
 

sxA UU 22 δδδα +≈ ,     (27) 
 
which does not depend on k. However, for inductors measured at low frequencies, the first 
part in formula (26) is quite significant and its important to determine the optimal value for k 
for each particular case. 
 In Figure 5 the uncertainty δLx of Lx is presented for a 10 mH GenRad inductance standard, 
referred to 20Ω, 60Ω and 100Ω resistance standards,  Rs, for measurements at a  frequency of  
f = 1kHz. The uncertainty changes substantially with the value of k and for the  reference 
standard Rs = 60Ω, the minimal measurement error is obtained for k ≅ 0.87. For a lower 
frequency (f < 1kHz) the influence of the value of k on the measurement error is getting larger 
and it is essential to calculate an optimal value of k for each Rs. 
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Fig. 5. Uncertainty δLx as a function of the IVD setting k for different values of reference Rs standard. 
 
 

7.2. Choice of optimal k in resistance measurements 
 
 The uncertainty of resistance measurements is approximately equal to the uncertainty of 
determination of the αB coefficient . For comparison of Rx v. Rs, with small values of time 
constants of the compared standards we can neglect the value of the ratio x = Xx/Rs. The plot 



of measurement uncertainty as a function of k for various values of r = Rx/Rs is presented in 
Fig. 6. The results 
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Fig. 6. Uncertainty of Rx v. Rs comparison as a function of the IVD setting k for various ratios r = Rx/Rs. 

 
show a very strong dependence of uncertainty on the value of k and this means that the 
optimal value of k should be calculated for each measurement and the IVD setting.  A similar 
analysis should be performed when large capacitances are measured. 
 
 

8. UNCERTAINTY OF VOLTAGE MEASUREMENT 
 
 The accuracy of measurements is determined by uncertainty of voltage  measurements. 
This depends on the parameters of voltmeters and  the generator. The most important factors 
are: stability of voltmeters and generators and linearity of voltmeters. In the case of 
generators we need  high stability, particularly for the configuration in which. only one 
voltmeter is used to measure all three voltages. Two voltmeters of type “AC Standard 5790A” 
and one generator “Calibrator 5700A”, manufactured by FLUKE were examined. Most 
measurements were made in the 2.2 V range and at a  frequency of 1000 Hz. 
 
  

8.1. Stability 
 
 Two kinds of stability have been examined: mutual stability of one voltmeter v. another 
one and mutual stability of a voltmeter v. the calibrator. From the obtained results the 
following conclusions can be drawn: 
a) relative difference between successive readings does not exceed ±5 ppm, 
b) relative difference between "moving average" of 10 readings usually does not exceed 

± 1.2 ppm, 
c) relative difference between moving average of 100 readings usually does not exceed 

± 0.3 ppm 
d) drift of moving average of 100 readings usually does not exceed ± 0.3 ppm/minute. 
 Sometimes it happens that there is a bigger change in successive readings. In this case we 
should remove these results as outliers. 
 Mutual stability of the calibrator and voltmeter was examined for the 2.2 V range. From 
these measurements the following conclusions can be drawn: the system (particularly the 



calibrator) should operate at least 24 h before the measurements. It is not enough to keep it in 
the “stand by” mode. After switching from the “stand by” mode to “operate” mode the output 
of the calibrator drifted for many hours and during this time quick changes of readings 
resulting in ± 2 ppm "jumps" of  100 readings average, have been observed. It was probably 
due to the internal system which controls the level of the calibrator output. Such jumps were 
rarely observed after 24 hours work and the average of 500 readings was very stable - under 
0.2 ppm/4 hours.  
 To get the highest accuracy of measurements the following procedure is recommended: 
a) set the system in operating mode for at least 24 h and observe if successive readings are 

stabilised,  
b) start the measurement from the highest voltage of Ux,U0 and Us, say Ux and take 500 

readings of each voltage measurement,  
c) during measurements, control the jumps of readings and in case they should occur remove 

them from the data, 
d) return to the measurement of the first voltage, Ux, and if the average of 500 readings did 

not change more from the first series than an assumed value, say 1 ppm, the measurement 
results can be accepted. 

 
 

8.2. Linearity  
 
 The linearity error of the voltmeter was checked in reference to the IVD, Model 73 
manufactured by ESI, with a relative uncertainty of 0.5 ppm. Two voltmeters were examined, 
AC STANDARD manufactured by FLUKE, at 1 kHz frequency and Umax = 2.2V range and 
(some measurements were made also at lower ranges) the following results have been 
obtained: 
a) The non-linearity error, in the voltage range (0.6 Umax to Umax) referred to the measured 

value, is smaller than 2 ppm. For the lower voltage value the error is greater and for 
U/Umax = 0.3 can be as big as 6.5 ppm.  

b) Non-linearity errors of both checked voltmeters have a similar shape and the difference 
between them, for the range 2.2 V, is smaller than 0.2 ppm.  

c) For the range of 220 mV the non-linearity error is greater and can be as big as 30 ppm. 
d) The non-linearity error during 5 days of examination did not change substantially. In the 

voltage range (0,6 -1)Umax the observed change was smaller than 0.3 ppm. 
 It is worth to notice that the non-linearity error of the examined voltmeters, for the range of 
2.2 V, is smaller than 2 ppm. Thus the error of voltmeters is about 4-5 times greater than the 
non-linearity error of typical IVD’s. 
 
 

9. CONCLUSIONS 
 
 The presented analysis of the three-voltmeter method and investigation of commercially 
available instruments proved that the method is suitable for impedance comparison with 
relative uncertainty up to a few ppm. To obtain such high accuracy the circuit should be 
optimized by: using a proper value of the reference standard, Zs, setting an optimal value, k, 
of the IVD; warming up the apparatus during at least 24 hours before measurements and using 
an average of least 500 readings with outliers removed. 
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ANALIZA METODY TRZECH WOLTOMIERZY PRZEZNACZONEJ DO KOMPARACJI 

IMPEDANCJI W ZAKRESIE MAŁYCH CZĘSTOTLIWOŚCI 
 

S t r e s z c z e n i e 
 

 Przedstawiono podstawy metody trzech woltomierzy przeznaczonej do precyzyjnych komparacji impedancji. 
Opracowano uogólnienie klasycznego układu i przeanalizowano jego własności. Wyprowadzono wyrażenia 
pozwalające na wyznaczanie parametrów impedancji i analizowano niepewność pomiarów dla różnych 
rodzajów komparacji. Określono stąd optymalne warunki pomiarów. Ważne parametry woltomierzy, takie jak 
błąd losowy i błąd nieliniowości były eksperymentalnie badane. Przedstawione wyniki wskazują, ze przy użyciu 
metody trzech woltomierzy z wykorzystaniem dostępnej w handlu aparatury pomiarowej, jest możliwe 
dokonywanie komparacji impedancji,  w zakresie niskich częstotliwości, ze względną niepewnością na poziomie 
(1-5)×10-6.  
 


