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CONDUCTANCE QUANTIZATION IN FERROMAGNETIC CO NANOWIRES 
 
 

Room temperature electronic transport properties of ferromagnetic quantum wires have not been yet fully 
understood, and the role of electronic structure of magnetic atoms in the conductance quantization is still under 
discussion. We present experimental results on conductance quantization in point contacts between ferromagnetic (Co) 
or nonmagnetic (Au) wires and semiconductor (Ge) samples. The main features of the conductance histograms are 
consistent with the conductance quantization in the units of quantum conductance G0 for the nonmagnetic wires and 
nG0 for the ferromagnetic Co nanowires. Such behavior of the conductance of ferromagnetic wires is a consequence of 
the complex electronic structure of magnetic 3d transition-metal atoms. A description of the quantization phenomena is 
presented in terms of the Landauer formalism. 
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1. INTRODUCTION 
 

Crystalline nanostructures, such as magnetic nanowires, offer unique access to low dimension 
condensed-matter physics. Quantum wires could also be an alternative to carbon nanotubes as 
nanotechnology building blocks to reach device integration densities higher than in conventional 
fabrication methods. Rapid development of the nanostructure fabrication techniques in the past few 
years has made it possible to produce low-dimensional quantum wires of very high structural 
quality. Nanowires have been very attractive as promising candidates for the next generation 
electronic and photonic devices because of low power consumption. Understanding electron 
conduction through magnetic (Co, Ni) and semiconductor nanowires connecting two macroscopic 
electrodes is particularly attractive from the point of view of the fundamental physical properties of 
such structures as well as from the point of view of potential applications in spintronic devices. 

Quantum conductance measurements for metallic nanocontacts display flat plateaus and abrupt 
drops during their elongation, even at room temperature, which can be attributed to atomic 
rearrangements. In noble  metals (Ag, Au) and alkali metals (Li, Na) the last conductance step 
before wire breaking, most likely corresponding to a monoatomic nanocontact, has the value of G0 
[1]  (G0 = 2e2/h is the conductance quantum per double spin), which can be associated with the free 
propagation of valence s-electrons in two quantum channels (one per each spin orientation). For 
magnetic transitions metals such as Co and Ni the experimental data are less consistent. Oshima et 
al., [2] found the conductance steps in Ni nanocontacts preferentially near G0 and 2G0 at room 
temperature (RT) and zero magnetic field,  near 2G0 at 770K and zero field , and near 1.5G0 
(occasionally near 0.5G0) at RT in a magnetic field. Ono et al. [3] reported again G0 for Ni at zero 
field and 0.5G0 for Ni in a field. Recently Rodrigues et al. [4] observed one conductance quantum 
in a Co atomic chain at RT and zero fields. Untiedt et al. [5] obtained low temperature zero-field 
data for several magnetic (Fe, Co and Ni) and nonmagnetic (Pt) quantum wires, and reported a 
dominance of the conductance steps between G0 and 1.5G0 in Co and Ni. 

In this paper we investigate the conductance of atomic-sized contacts in air and at room 
temperature, formed between magnetic (Co) or nonmagnetic (Au) metals and semiconductor (Ge) 
samples. We present clear evidence of conductance quantization in ferromagnetic Co nanowires. 
Electronic transport properties of the metallic nanowires were measured with an oscilloscope, using 
the quantum point contact configuration. 



 

 
 

2. ELECTRONIC CONDUCTION IN METALS 
 
The electric current density j in a solid is given by the constitutive equation 
 

j = g E ,      (1) 
 
where E is the electric field and g is the electrical conductivity of the solid. The corresponding 
electrical resistivity ρ is defined via the relation 
 

     E = ρj,       (2) 
 
and is related to the conductivity,  ρ= 1/g. 

The first attempt to explain the metallic conductivity was made by Drude in 1900, only three 
years after the discovery of the electron. Drude assumed that the metal is composed of atoms which 
are stationary and valence electrons which are free to move and form an ideal electron gas. On this 
assumption, the electrical conductivity g is given by the formula (known as the Drude formula) 
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where m is the free electron mass, e is the electron charge, n is the electron concentration, and τ  is 
the average time (mean lifetime or relaxation time) between electron collisions with impurities, 
electrons and other defects or quasiparticles. The relevant formula for the resistivity ρ is 
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From Eq. (3) once can conclude that the electrical conductivity depends on temperature mainly 

via different scattering processes which enter into the relaxation time τ . In a typical metal there are 
three dominant scattering processes; scattering by impurities, by electron – electron collisions, and 
by electron–phonon interactions. These are independent processes, so one should add the 
corresponding partial scattering rates in order to obtain the total effective scattering rate 
(Mathiessen rule). 

The Drude model of electrical conduction is consistent with Ohm’s law. However, there are 
many other features of electronic transport in metallic systems which cannot be accounted for using 
such a simple description. For instance, scattering by surface and/or interface roughness needs 
another quasi-classical approach. Apart from this, some of transport features need quantum-
mechanical approaches. Typical examples of such features are weak localization due to enhanced 
back scattering and Kondo anomaly due to scattering on magnetic impurities. 

Although the nature of quantum-mechanical approaches is very different from that of the Drude 
description, there are some noticeable similarities and many concepts developed in the classical 
model – such as mean free path λ , mobility and drift velocity – are also relevant in quantum 
models. However, values of these parameters in quantum models can be quite different from the 
classical ones. For example, electrical conductivity g and mobility µ  are formally equivalent to 
those of the Drude model. The relaxation time τ , which was not exactly specified in the Drude 
model, is that for electrons at the Fermi level. The effective mass m* replaces the free electron mass 
m. The total concentration of electrons in the conductance band appears in both models. This 
similarity explains why the Drude model yields satisfactory results in many situations.  
 



 

 
3. CONDUCTANCE QUANTIZATION OF A ONE - DIMENSIONAL METAL 

 
Electronic conductance of a macroscopic wire is inversely proportional to its length L. When the 

wire dimensions scale down, so the wire length becomes smaller than the phase coherence length lφ, 
the macroscopic description is no longer applicable and Ohm’s low breaks down (this is the so-
called mesoscopic regime).  Electronic transport changes then from diffusive to quasi-ballistic or 
ballistic, as shown schematically in Fig.1. 

 

 
 

Fig. 1. Diffusive (a) and ballistic (b) electron transport in a one-dimensional wire. 
 

When the wire width is reduced to the nanometer size or to the Fermi wavelength scale, the 
conductance between electrodes connected by the nanowires is quantized in steps, with the values 
close to nG0, where n is an integer and G0 = 2e2/h = 1/12.9 kΩ (7.75 10-5S) is the conductance 
quantum. Moreover, the conductance is no longer dependent on the length of the wire. Using the 
Landauer formula [6], the conductance G can be expressed as  
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where the sums run over all N↑ and N↓ occupied conductance channels (subbands) for up and down 
spin orientations, respectively, and Ti↑ and Ti↓ are the corresponding electron transmission 
probabilities. The Fermi wavelength  λF in metals is of the order of 0.5 nm, and the level separation 
is ~ 1eV, which means that conductance quantization can be observed at room temperature if W and 
L are smaller than the electron mean free path l ~ 10nm. 
For diamagnetic nanovires the quantum channels are spin degenerate and Ti↑ = Ti↓ = Ti. Equation (5) 
then becomes  
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This function has a staircase behavior but the height of the quantum conductance step is 2e2/hTi 

instead of 2e2/h.  
The quantum channels arise from quantization of the momentum px and py of the electron waves 

confined in the wire when the constriction width W is sufficiently small (see Fig. 1). Assuming a 
simple quantum wire based on a two-dimensional electron gas only quantization of one, say px, is 
relevant. The momentum px is then given by hn/2W for integer values of n. The largest value of n 
defines the number of conduction channels N. This number depends on the wire width and is 
determined by the condition that the maximum value of px cannot exceed h/λF. 



 

Of course, only electrons with energy in the window Ef  to Ef + eV can contribute to the 
conduction current, where Ef is the Fermi energy and V is the applied bias voltage. Assuming 
ballistic transport (Ti = 1), and taking into account the spin degeneracy of quantum channels in 
nonmagnetic wires, one finds the conductance G0 = 2e2/h for each  conducting channel. Thus, the 
conductance decreases stepwise as the nanowire width becomes smaller and smaller. It is worth 
noting that according to the classical Drude theory the conductance of a macroscopic wire depends 
on the wire length, its cross-section area, and type of the material. For ballistic transport, however, 
the conductance depends only on the wire’s width. 

The conductance quantization has been discussed theoretically more rigorously for simple 
atomic nanowires. However, the transmission properties of nanoconstrictions with electron–electron 
interactions, spin dependent electronic structure, and magnetic domain walls taken into account are 
still not fully described and understood, and are of current interest [8]. 
 
 

4. EXPERIMENT 
 

The electrical conductance of a Co ferromagnetic or nonmagnetic Au nanowire at the break-
junction between Co or Au wire and a Ge sample was measured by using the mechanically 
controllable break-junction technique. The experiments are performed at room temperature and in 
air. 

 
 

Fig. 2 Schematic diagram of the experimental setup. 
 

The experimental setup for break-junction measurements is presented in Fig. 2. The nanowires 
are formed between magnetic or nonmagnetic metallic tips and a semiconductor Ge sample: A (a 
sample) and B (a tip). The function generator (Hewlett Packard 33120A) is used to control the 
movement of the piezoelectric actuator head on which the B tip is mounted. A voltage source VS 
supplies a bias voltage to the nanowire. A resistor RM is used to convert the resulting current I into a 
voltage signal VM, which is measured by a digital storage oscilloscope (LeCroy 9310 CM). A digital 
oscilloscope is set to trigger when the nanowire breaks, and the voltage trace is transferred to the PC 
using an IEEE-488 interface bus and stored for later analysis. An electronic circuit for measuring 
the conductance of a nanowire allowed the observation of the time-dependent process and precise 
registration of the elongation velocity of the nanowire in a wide range.  
 



 

 
 

Fig. 3. Conductance traces for a gold nanowire during elongation at room temperature and in air for the electrode 
separation speed of 160 nm/s. The applied potential difference between the separating electrodes is 400 mV. 

 
Similar experiments for a diamagnetic Au tip and Au sample as well as for a Co tip and Co 

sample have also been performed for comparison reasons. 
 

 
 

Fig. 4. Conductance histogram for gold nanowires built with 5000 consecutive traces. 
 
 

5. RESULTS AND DISCUSSION 
 

In this work the histograms built using all consecutive conductance curves at room  temperature 
are presented for gold and cobalt nanowires and Ge samples. The conductance histogram for Au at 
room temperature and in air shows clear peaks (see Fig. 4). The corresponding conductance traces 
clearly show the conductance quantization steps (Fig. 3).  
 

 
 

Fig. 5. Conductance traces for gold nanowires during elongation with an electrode separation speed v = 0.016 µm/s. 
Nanowires formed between: a gold tip and a gold surface (a) and a gold tip and a germanium surface (b). 

 



 

 
 

Fig. 6. Conductance traces for gold nanowires during elongation with an electrode separation speed v = 0.16 µm/s. 
Nanowires formed between: a gold tip and a gold surface (a) and a gold tip and a germanium surface (b). 

 

 
 

Fig. 7. Conductance traces for gold nanowires during elongation with an electrode separation speed v = 1.6 µm/s. 
Nanowires formed between: a gold tip and a gold surface (a) and a gold tip and a germanium surface (b). 

 
Figures 5 (a, b), 6 (a, b) and 7 (a, b) present  conductance curves for Au-Au and Au-Ge with  

different separation speed during the nanowire elongation. As can be seen in these figures, the 
conductance plateaus are different for the same electrode separation speed. The time scale of these 
plateaus for Au–Ge it is two orders of magnitude longer than that for Au–Au. This is due to the fact 
that hardness of Ge is much higher than that of Au and the gold wire during the electrode separation 
is elongated. The gold nanowire for the gold tip–Ge sample is a few atomic diameters wide. If the 
quantum point contacts with atomic necks are relatively large, the scattering of electrons may 
become important in the transport process and the conductivity plateaus often occur for nG0 with n 
deviating from an integer. 

 

 
 

Fig. 8. Conductance histogram for cobalt nanowires built with traces from 1 to 1700. Nanowires formed between: a 
cobalt tip and a germanium surface at RT in air. 

 



 

 
 

Fig. 9. Conductance histogram for cobalt nanowires built with traces from 1 to 500. Nanowires formed between: a 
cobalt tip and a germanium surface at RT in air. 

 

 
 

Fig. 10. Conductance histogram for cobalt nanowires built with traces from 501 to 1039. Nanowires formed between: a 
cobalt tip and a germanium surface at RT in air. 

 
We find interesting electronic conductance properties of junctions formed at the contact between 
the Co wire and Ge sample. The corresponding conductance histogram shown in Fig. 8 is built of a 
series of 1700 time dependent processes. The conductance histograms presented in Fig. 9 and 
Fig. 10 for a magnetic nanowire are built with traces from 1 to 500 and 501 to 1039, respectively. 
The histograms exhibit one well-defined peak at approximately 2G0 and also peaks corresponding 
to the conductance plateaus at nG0 (1.51G0, 2.66G0, and 3.45G0). The quantization of the 
conductance is not merely a statistical fluctuation but it appears as an average phenomenon and can 
be considered as an intrinsic feature of the magnetic nanowire and semiconductor sample. 
 



 

 
 

Fig. 11.  a) Conductance traces from 1040 to 1440 with step 40. b) Conductance histogram for cobalt nanowires built 
with traces from 1040 to 1446. Nanowires formed between: a cobalt tip and a germanium surface at RT in air. 

 
Measurements performed at room temperature in air, showing the conductance plateaus and global 
histogram exhibiting the statistical conductance for Co tip, are given in Fig. 11. Note that the lowest 
plateau in (a) and the lowest peak in (b) are located at 2.01G0, which corresponds to the thinnest Co 
wire. Such behavior of the conductance is a consequence of the complex electronic structure of 
ferromagnetic Co metal. 
 

 
 

Fig. 12. Conductance traces for a cobalt nanowire during elongation at RT in air. The applied potential difference 
between the separating electrodes is 400 mV. 

 
Finally we would like to mention that conductance curves in Co-Co nanowires at room 

temperature show staircase-quantized behavior (Fig. 12), but the histogram (Fig. 13) does not show 
the quantized peaks, most probably due the lifting of the spin degeneracy [4, 7]. 

 



 

 
 

Fig. 13. Conductance histogram for cobalt nanowires built with 5000 consecutive traces. 
 
 

6. SUMMARY 
 

Our data have been statistically analyzed by plotting histograms for more than thousand 
measured conductance values. Figures 11a and 11b show typical features of the conductance 
measured in the units of G0, and the measurements clearly demonstrate that the room-temperature 
conductance of Co-Ge break-junctions is quantized with the corresponding conductance plateaus at 
nG0 (2.01G0, 2.66G0 and 3.45G0). Such behavior of the conductance is a consequence of the 
complex electronic structure of magnetic 3d transition-metal atoms. These results create new 
opportunities for a deeper understanding of the spin dependent electronic structure of the 
ferromagnetic quantum wires and may have important implications for the development of future 
spintronic devices based on magnetoresistance phenomena in ferromagnetic quantum wires and 
point contacts. 
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KWANTOWANIE PRZEWODNOŚCI W NANODRUTACH Z KOBALTU 
 

Streszczenie  
 

W pracy opisano kwantowanie przewodności elektrycznej w nanostrukturach typu magnetyczny kobalt (Co) lub 
niemagnetyczne ostrze Au oraz półprzewodnikowa (Ge) próbka. Balistyczny transport elektronów występujący w 
kwantowych magnetycznych drutach nie jest w pełni wyjaśniony a rola struktury elektronowej ferromagnetycznych 



 

metali 3dn w kwantowaniu przewodności elektrycznej jest aktualnie przedmiotem dyskusji. Właściwości badanego 
przewodnictwa w nanozłączach z elektrodą magnetyczną są konsekwencją złożonej struktury pasmowej i gęstości 
stanów elektronowych metali przejściowych, a tym samym właściwości funkcji falowych elektronów przewodnictwa 
oraz ich właściwości spinowych. Dlatego dla nanodrutów magnetycznych przewodność przybiera wartości mniejsze od 
pojedynczego kwantu G0 jak również zarejestrowano wartości nG0 znajdującymi się pomiędzy kolejnymi schodkami. 
Analizę przewodności jednowymiarowych drutów połączonych dwoma elektrodami przeprowadzono stosując teorię 
Landauera z uwzględnieniem jednoelektronowego tunelowania elektronów o zmiennym współczynniku transmisji. 


