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ANALYSIS OF THE IRREGULARLY SAMPLED SIGNALS ABOVE THE NYQUIST 
LIMIT 

 
 

A new method of spectrum analysis of the nonuniformly sampled data above the Nyquist limit is proposed, 
which is based on the digital spectral shift to the baseband, optional filtering and the subsequent spectrum 
analysis below the Nyquist limit. The method is distinguished by low aliasing frequency estimation and 
sufficient computation effectiveness. The mathematical background is shown and simulation results are 
presented to illustrate the method basics. 
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1. INTRODUCTION 
 
Nonuniformly sampled data occurs in several applications such as geophysics [1], Laser 

Doppler Anemometry (LDA) [2], oscilloscopes [3] and radar or sonar signal processing [4]-
[5]. Such type of data is used by  system designers to avoid aliasing in the signal spectrum or 
when, due to technical problems, it is sometimes impossible to perform regular sampling. 
Several methods for spectrum analysis of the nonuniformly sampled data are proposed, such 
as Lomb periodogram [6], Koh-Wicks-Sarkar equation [5], Dirichlet transformation [7], 
SECOEX method [8], non-uniform DFT [9] or some approximation methods [10]-[11]. The 
main disadvantages of the enumerated methods consist in the aliasing effects due to the non–
orthogonal basis or their impossibility to analyze the nonuniformly sampled data above the 
Nyquist limit. 

Therefore, this paper proposed a method to overcome the selected problems and allowed 
spectrum analysis above Nyquist limit. This method is based on the digital spectral shift to the 
baseband, optional filtering and implementation of the spectrum analysis below the Nyquist 
limit. 

 
 

2. SPECTRUM SHIFT EQUATION DEFINITION 
 

Spectral shift analytical expression of the nonuniformly sampled data is implemented using 
the basic spectral shift equation [12]: 
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where: ( )ωjU  - shifted spectral response, γ - frequency shift. 

The nonuniformly sampled data u(tn) are calculated by the well-known inverse Fourier 
transform [13]: 
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If Eq. (2) is substituted to the definition Eq. (1), the nonuniformly sampled data u(tn) are 

estimated according to the equation: 
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The mathematical proof of this equation can be expressed as: 
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3. METHOD DESCRIPTION 
 

The simplest case appears when the signal frequency band is smaller than the average 
sampling frequency fs (Fig. 1). This situation occurs in the radio propagation channels where 
signals are transmitted in selected frequency bands (GSM, WLAN, etc.). In this case the 
original signal is filtered by an channel analog filter and is frequency shifted to the analyzed 
frequency band by using the Eq. (3). 
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Fig. 1. Narrow signal frequency band case. 
 
The new time series u(tn) is analyzed in the frequency domain according to equation [14]: 
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Since the analyzed frequencies are uniformly disposed ( 10,0 −≤≤∆+= Niii ωωω ), the 

frequency estimation Eq. (4) is modified as: 
 

 ( ) ∑
−

=

∆
=

1

0
0 N

i
ktji

eiAktj
ektu

ωω
. (5) 

 



The complex amplitude coefficients Ai are calculated using the equation: 
 

 1. −= YUA , (6) 
 

where: [ ]10 ,..., −= NAAA  - amplitude coefficient matrix, ( ) ( )[ ]10 ,..., −= NtutuU  - data matrix, 
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- basic matrix.  

A more complicated case appears when the signal frequency band is wider than the 
average sampling frequency (Fig. 2). This situation is observed in location devices 
(radiolocation, sonar and lidar devices, etc.). In this case the whole signal frequency band is 
divided into M secondary bands whose bandwidth is equal to fs. As the interpolation spectrum 
analysis is used to estimate the signal frequency response, the signal has to be filtered by a 
band-pass filter (BPF) for each secondary band. Therefore, the spectrum estimation procedure 
has to be implemented M times to calculate the entire signal frequency response. 
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Fig. 2. Wideband case. 
 

As the basic matrix is recognized as a Wandermonde matrix, the total number of floating 
point calculations is defined as NMN 2

2log  since the single-band calculations require 
NN 2

2log  [15-16]. If the SECOEX method is used to calculate the frequency response, the 
required number of calculations is equal to N 2 when the pseudo-inverse matrix is 
preliminarily calculated. Therefore, the SECOEX method requires approximately the same 
amount of calculation time, but it produces very high aliasing peaks as wideband noise [8]. 
The other frequency estimation methods, described in § 1, are distinguished with the same 
disadvantages. 
 
 

4. SIMULATION RESULTS 
 

To demonstrate the significance of the theoretical formulation, we test the proposed 
method using the MATLAB routine. The simulated signal is defined as a linear frequency 
modulated (LFM) pulse, because its spectrum is nearly rectangularly shaped: 
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where: f0 - carrier frequency, τωµ 2∆=  - rate of frequency sweep, ∆ω - swept spectrum 
bandwidth, τ - expanded pulse width. 

The average sampled frequency is chosen, thus the analyzed frequency band is equal to the 
standard voice band channel (fs = 3.1kHz). The time samples are set to N = 127 and are 
calculated according to the equation: 
 
 10, −≤≤+= NkkkTkt δ , (8) 

 
where T = 1/fs - uniform sampling time, δk - deviation from the uniform sampling law. 

The uniform sampling law deviation satisfies the equation |δk| ≤ 1/2Т and is normally 
distributed at the selected boundary. The routine selects the optimal time instants among 
10000 independent simulations, where the optimal sampling times are distinguished with the 
smallest condition number of the basic matrix [17]. 

The frequency estimation method follows the above described procedures. The first step is 
recognized as digital frequency shifting of the nonuniformly sampled data to translate the 
signal frequency band to the baseband. The second step accomplishes the frequency 
estimation method according to the Eq. (6). 

The simulation conditions and frequency estimation results are represented in Fig. 3. The 
signal frequency band before digital frequency shifting is set to 186 ÷ 189.1kHz, which is 
down-converted to 0 ÷ 3.1kHz. 
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Conditions: f0 = 60fs + 1kHz, µ = 8.104rad/s2 

(τ = 41ms, ∆f = 1.044kHz) 
fs = 3.1kHz (T = 0.3226ms) 

 
Fig.3. Estimated signal spectrum. 

 
Therefore, the high frequency signal is sampled with a 3.1kHz sampling frequency and its 

spectrum is shown below. The figure shown indicates that the proposed method correctly 
estimates the signal frequency response by using digital frequency shifting of the 
nonuniformly sampled data to the analyzed frequency band (baseband). At the same time the 
nonuniform sampling scheme is distinguished with a slightly increased sidelobe level in 
comparison with  uniform sampling which cannot analyze data above the Nyquist limit. 
 
 



5. CONCLUSION 
 

The simulation results show that the proposed method successfully estimates signal the 
spectrum response even when. The method allows using low cost analog-to-digital converters 
(ADC) to analyze the high frequency signals when the nonuniformly sampling scheme is 
used. The excellent computation effectiveness allows implementing the digital signal 
processing procedure in the microcontroller core, which minimizes the device cost and 
increases  system performance. 
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ANALIZA SYGNAŁÓW PRÓBKOWANYCH NIEREGULARNIE POWYŻEJ WARTOŚCI GRANICZNEJ 
NYQUIST'A 

 
Streszczenie  

 
Proponuje się nową metodę analizy widmowej danych próbkowanych nieregularnie powyżej granicznej 

wartości Nyquist'a, opartej na cyfrowym przesunięciu widmowym do pasma podstawowego, filtracji optycznej i 
następnie analizie widmowej poniżej wartości granicznej Nyquist'a. Metoda odznacza się niską oceną 
częstotliwości aliasowania i wystarczającą skutecznością obliczeń.  

Podane są podstawy matematyczne metody; przedstawione zosdtały też wyniki symulacji dla zilustrowania 
podstaw metody. 


