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ON IMPROVEMENT OF SAMPLING TECHNIQUE DESIGNED FOR PRECISE

ROOT MEAN SQUARE MEASUREMENTS

A method for precise root mean square (RMS) measurement of periodic signals based on signal

reconstruction is analysed. The RMS value of a signal under test is determined in three steps. In

the first step, the Fourier coefficients are estimated from integrative samples, in the second step

the estimators are corrected, using the method of least squares with constraints and precision

measurement of rectified signal average, and in the third step the RMS value is calculated from

the Fourier coefficient estimators. Properties of integrative samples are analysed and the problem

of choosing the optimal integration time is discussed. It is shown that this approach, optimal

reconstruction with correction, considerably increases the accuracy of the RMS measurements of

low frequency signals.
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1. INTRODUCTION

Presently the most accurate RMS measurements are made by systems based on

thermal voltage converters (TVC), and relative measurement uncertainties in standard

laboratories can be as low as 1 µV/V [1]. However, instruments based on TVC’s have

many disadvantages: insufficient thermal inertia for low frequency signals, they are

sensitive to overloading and very expensive. Investigation made by Pogliano [1, 2]

shows that the uncertainty of the TVC can drop, due to thermal inertia, from 1 ppm

level for 1000 Hz frequency signals to 10 ppm level for 10 Hz signals. Additionally, we

can observe steady improvement of analogue to digital converter (ADC) parameters.

Their uncertainty can be as high as 1 ppm [2], and we can expect that it will be

still improving during forthcoming years. Then it is reasonable to develop a sampling

technique for precise measurements of signal parameters. Two kinds of samples can

be used: point samples and integrative samples. It has been shown that the latter

one is particularly advantageous for precise measurement of low frequency signals [1,

3]. It provides very accurate measurements using the reconstruction technique with

correction [3]. The correction improves significantly the accuracy of determination of
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the RMS value, but the final results depend also on reconstruction accuracy and this

can be improved by optimization of integrative samples.

In the paper we investigate the possibility to apply high accuracy integral samples

obtained by using an ADC to reconstruct the signal under test and to determine in

this way its parameters, particularly the RMS value. Properties of integrative samples

are discussed and their application for periodic signal reconstruction is analyzed. The

very important problem of choosing the optimal integration time is discussed and three

possible solutions are proposed. General formulas for estimators of the Fourier series

coefficients and the RMS value of the signal are derived by using the method of least

squares (LS) based on integrative samples. Additionally, a method for correction of the

estimators, based on rectified signal average (RSA) measurements is presented. The

effectiveness of correction is analyzed for some important signals and its value assessed.

It is shown that the method makes it possible to obtain a significant improvement of

RMS measurement accuracy by using commercially available apparatus.

2. PROBLEM STATEMENT

Let the signal under test, s(t), be periodic with period T and band limited, then it

can be expanded into a finite Fourier series

s(t) = a0 +

K
∑

k=1

[akcos(ωkt) + bksin(ωkt)], (1)

where ω = 2π f is the basic angular frequency and f = T . If we sample the signal

s(t) at the rate fs samples per second and collect N points, we get the data sequence

{sn}, n = 0, 1, . . . ,N − 1. Further considerations are also valid for the general ca-

se, when the samples are not uniformly displaced and are taken at any instances

t0, t1, . . . , tN−1. The aim of the reconstruction is to estimate the Fourier coefficients

a0, ak , bk, k = 1, 2, ...,K, and signal frequency, f , from samples. Having estimated the

values of the Fourier coefficients it is possible to estimate signal parameters, particularly

its RMS value. To avoid aliasing, the sampling frequency fs = 1/Ts, should satisfy the

Nyquist inequality fs > 2K f .

The number of parameters a0, a1, ..., aK , b1, b2, ..., bK , to be estimated is equal

to 2K + 1, therefore to estimate it, the number of samples, N , should be equal or

greater than 2 (K + 1), i.e. N ≥ 2 (K + 1). The number K, of the highest Fourier

series coefficient, is usually unknown and should be also determined from samples.

The value of K can be determined from samples by investigating the relation between

samples and the reconstructed signal.

When estimates of the Fourier coefficients are known they can be used for calcu-

lation of the RMS value, rms, by using the formula
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To obtain high accuracy of reconstruction instead of point samples, integrative samples

are used and additionally the rectified signal average (RSA) of the signal is precisely

measured. These results can be used for correcting the estimates of the Fourier coef-

ficients. A proper formula for correction is derived using the method of least squares

with constraints.

3. INTEGRATIVE SAMPLES

We shall discuss now properties of integrative samples, in particular their frequency

characteristics. The n-th integrative sample sn = sa[nTs] of the signal s(t) at the instant

tn = nTs, where Ts is the sampling period, is determined by the formula

sn = sa[tn] =
1

Ta

tn+Ta/2
∫

tn−Ta/2

s(t)dt, (3)

where Ta is the integration time. If Ta << T , then the integrative sampling is well

approximated by point sampling. If Ta → 0 then the integrative sample becomes a

point sample for t = tn. However when Ta is a sizeable fraction of T , we can expect a

low-pass filtering effect that is not negligible. We analyze this effect more precisely.

Define the auxiliary signal y(t) as the definite integral of s(t), that is

y(t) =

t
∫

−∞

s(τ)dτ + c, (4)

where c is an arbitrary constant. Next we define the other auxiliary signal

x(t) =
1

Ta

[y(t + Ta/2) − y(t − Ta/2)], (5)

then the integrative sample sa[nTs] of s(t) at the instant tn = nTs can be presented as

a point sample x[nTs] of x(t) by formula

sa[nTs] = x[nTs] =
1

Ta

[y(nTs + Ta/2) − y(nTs − Ta/2)]. (6)

Let S(ω) be the Fourier transform of s(t), i.e. form the pair s(t)↔ S(ω). If s(t) is

shifted in time then [5]
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s(t − a)↔ e− jωaS(ω) (7)

and if s(t) is integrated in time then

t
∫

−∞

s(τ)dτ ↔
1

jω
S(ω). (8)

Using these properties we get

y(t + Ta/2)↔
1

jω
S(ω)e jωTa/2. (9a)

y(t − Ta/2)↔
1

jω
S(ω)e− jωTa/2, (9b)

Then by applying (9) to the signal x(t), (5), and by linearity of the Fourier transform,

we obtain

x(t) ↔
1

jωTa

S(ω)
[

e jωTa/2 − e− jωTa/2
]

. (10)

The right hand side of (10) can be simplified by using Euler’s formula

sin(α) = 0.5 j(e− jα − e jα) and the sampling function

sinc(x) =



















sin x

x
dla x , 0

1 dla x = 0
. (11)

Next by applying this to (10) we get the pair

x(t) ↔ X(ω) = sinc

(

ωTa

2

)

S(ω). (12)

The Fourier transform X̂(ω) of the point samples x[nTs] is given by the Eq. [5].

X̂(ω) =
1

Ts

∞
∑

n=−∞

X

(

ω −
2πn

Ts

)

, (13)

then the Fourier transform Ŝa(ω) of integrative samples sa[nTs] is:

Ŝa(ω) =
1

Ts

∞
∑

n=−∞

X

(

ω −
2πn

Ts

)

(14)
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and by (12) we get the pair

Ŝa(ω) =
1

Ts

∞
∑

n=−∞

sinc

[(

ω −
2πn

Ts

)

Ta

2

]

S

(

ω −
2πn

Ts

)

. (15)

Finally by restricting the signal to the main lobe of the function sinc we obtain the

formula:

Ŝa(ω) =
1

Ts

sinc

(

ω
Ta

2

)

S (ω) . (16)

As we see, integrative sampling is equivalent to low pass filtering (with transfer function

sinc) followed by point sampling. When Ta is small with respect to the signal period

T , the attenuation of the low pass filter is negligible. When Ta approaches T , this

attenuation is approaching infinity. This property imposes limits on integration time and

this is in contradiction to properties of A/D converters – high accuracy converters need

long transformation (integration) time. However it is also possible to take advantage

of this filtering property of integrative samples. This leads to the problem of choosing

the optimal value of integration time Ta with respect to the accuracy of estimation and

this is discussed hereafter, in section 5.

4. SIGNAL RECONSTRUCTION

By substituting (1) into (3), after transformations, we get the formula

sa[tn] = a0 +

K
∑

k=1

[aksinc(kθ) cos(kωtn) + bksinc(kθ) sin(ωktn)], (17)

for the nth integrative sample, where θ = π(Ta/T ) is a relative integration time referred

to the signal period T = 1/ f .

By defining the transformed coefficients

α0 = a0,

αk(θ) = aksinc(kθ),

βk(θ) = bksinc(kθ), k = 1, ...,K.

(18)

Equation (17) can be presented in the form:

sa[tn] = α0 +

K
∑

k=1

[

αk(θ)cos(kωtn) + βk(θ)sin(kωtn)
]

, (19)

suitable for the estimation of transformed coefficients αk(θ) and βk(θ)and also for the

estimation of the Fourier coefficients αk and bk from (18). Notice that if θ = 0 then

αk = ak and βk = bk.
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Let sn = sa[tn] + ∆n, n = 0, 1, . . . ,N − 1, N > 2K + 1 are measurement values of

samples, where random errors ∆n of measurements are unbiased, E(∆n) = 0, have the

same variance var(∆n) = σ
2 and are not mutually correlated. Under these assumptions

the LS estimators minimize the residual sum of squares [4]:

Q =

N
∑

n=1















sn −















α0 +

K
∑

k=1

[αk(θ)cos(kωtn) + βk(θ)sin(kωtn)]





























2

, (20)

which, by introducing the matrix notation, becomes

Q = (s − Xa)
T
(s − Xa), (21)

where s = [s0, s1, ..., sN−1]
T is a vector of integrative samples,

a = [α0, α1(θ), ..., αK (θ), β1(θ), ..., βK (θ)]T is a vector of the transformed coefficients,

X =





































1 cosωt1 · · · cosKωt1 sinωt1 · · · sinKωt1

1 cosωt2 · · · cosKωt2 sinωt2 · · · sinKωt2

· · · · · · · · · · · · · · · · · · · · ·

1 cosωtN · · · cosKωtN sinωtN · · · sinKωtN




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

























(22)

is the design matrix and the superscript T denotes transposition.

Assume that the frequency f is known – measured before the experiment (the

case with unknown frequency can also be solved by minimizing Q, but it leads to a

nonlinear problem and will not be considered here). If the matrix X has full rank, the

least squares estimators α̂k(θ) and β̂k(θ), k = 1, ...,K, of the transformed coefficients

are [4]

α̂ = (XT
X)−1

X
T

s. (23)

Next, by (18), we get estimators â0 = α̂0, âk = α̂k/sinc(kθ) and b̂k = β̂k /sinc(kθ),

k = 1, ...,K, of the Fourier coefficients, which by substituting in (1) provide the recon-

structed signal ŝ(t).

5. CHOICE OF INTEGRATION TIME

As shown in section 3 the integrative samples have filtering properties and the

noise filtering characteristic is improving when the integration time is getting longer.

In addition, very accurate analogue to digital converters need a relatively long trans-

formation time and usually their transformation accuracy is improving with increasing

transformation (integration) time. These two factors advocate for applying as long

integration time as possible. However, this is in contradiction with the property of the

transformation function, sinc, as can be observed in Eqs. (16) and (18), which transfer
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regular Fourier coefficients ak and bk to transformed Fourier coefficients αk and βk .

To carry out this transformation the function sinc(kθ) in (18) cannot be equal to zero,

and to maintain high accuracy should not be also too close to zero. This means that

the integration time Ta cannot be equal (or close) to a multiple of the signal under test

period T , and this requirement should be satisfied for all Fourier series harmonics i.e.

kTa/T < N, k = 1, 2, ..., K, (24)

where N is a natural number. The condition (24) can be accomplished using one of

three methods which will be discussed shortly hereafter.

Method 1 (main lobe method)

The simplest way to satisfy (24) has been proposed by Pogliano [1], who assumed

that all points kθ, k = 1, . . . ,K, are within the main lobe of sinc(kθ), and from this we

get the following upper bound for integration time Ta:

Ta < T /K. (25)

However this condition is very strict and limits the application of the method to low

frequency signals only – when T is large, and simultaneously of very low distortion –

when the number of the highest harmonic K is small. Pogliano applied the main lobe

method to very pure sinusoidal signals with frequencies under 20 Hz.

Method 2 (alternating method)

The alternating method makes it possible to increase the integration time Ta beyond

the limit (25) and still satisfy the condition (24), by choosing Ta for which values of

kθ, k = 1, . . . ,K, are outside the main lobe of sinc(kθ) and simultaneously alternate

with zeros of these functions. In practical applications the functions sinc(kθ) not only

should not be equal to zero, but also, to preserve high accuracy, should not be too

small for all values of k = 1, . . . ,K. We can try to determine the optimal value of

θ, which is big enough (integration time Ta is long) and simultaneously minimizes

the transformation error. But to accomplish this, many specifications should be known

prior to experiment, as for example: (a) the relation between the conversion error of the

analogue-to-digital converter and its conversion (integration) time Ta, (b) the number

K of Fourier series harmonics and (c) the values of Fourier coefficients. This is seldom

the case, then we propose the following universal approach.

Assuming that Ta > 0.5 T (θ = πTa/T > π/2) we choose such a value of the

integration time Ta for which the multiple

MK(θ) = max
θ>π/2















K
∏

k=1

|sinc(kθ)|















, K = 1, 2, ... (26)

of absolute values of sinc(kθ) is maximal. An analysis of the functions MK(θ) for

various K has been performed using a special program written in MATLAB. A typical
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result of this analysis, a plot of MK(θ) versus θ for K = 5 and for interval 1/2 < Ta/T < 1

is presented in Fig. 1. It can be observed that the multiple M5(θ) has local maxima

and zeros, and the latter values of θ should be avoided. We confined the presentation

of MK (θ) to the interval 1/2 < Ta/T < 1 because investigation shows that outside this

region, i.e. when Ta/T > 1, the value of MK (θ) is significantly smaller then in the

interval 1/2 < Ta/T < 1, and this situation is not suitable and should be avoided. The

function M5(θ) has five local maxima and one global maximum for Ta/T � 0.555 and

the optimal value of integration time in the interval <0, 5T , T> is Ta � 0.555 T .
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Fig. 1. Plot of MK (θ) = M(pi∗theta) of coefficients sinc(kθ) = sinc(k∗pi∗theta) for K = 5; relative

integration time theta = Ta/T .

General analysis of plots MK (θ), performed for different values of K revels that

the functions have many local maxima, see Table 1, and the number of the maxima is

greater than the number of harmonics K, when Ta ∈<0, 5T , T>. For all K the lowest

local maximum, counting from Ta/T = 0.5, is also the global maximum (see Fig. 1,

where there is an example for K = 5). A global maximum indicates the optimum value

for integration time Ta. All neighbourhood local maxima are separated by zeros of

MK(θ), then the value of Ta should be determined accurately enough to avoid to be

too close to zero, and this is particularly important when K is getting large. Optimal

values of integration time Ta, for K = 1, 2, . . . , 10, are presented in Table 1 in reference

to period T of the signal under test, where we can also observe that the optimal values

of Ta are usually slightly greater than 0.5 T , and for K = 1, . . . , 10 they are from the

interval <0.535 T , 0.648 T>.
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Table 1. Optimal value (Ta/T)max of relative integration time as a function of the maximal number K of

harmonics; Mmax is a maximal value of MK (θ) and N is the number of maxima of MK (θ).

K 1 2 3 4 5 6 7 8 9 10

(Ta/T)max 0.500 0.648 0.570 0.586 0.555 0.560 0.543 0.545 0.535 0.538

MK (θ) 0.64 0.088 0.001 1×10−3 6×10−5 5×10−6 2×10−7 1×10−5 3×10−10 2×10−11

] N 1 1 2 3 5 6 9 11 14 >15

If the number K of the highest harmonic is unknown, we recommend to set the

value of Ta from the low part of this region i.e. Ta ≈ 0.54 T . Since with increasing

values of K maxima, and zeros separated from them are getting denser, then values of

Ta should be set with increasing accuracy, when K is becoming large, and for K > 10

exactly calculated and set. From this follows the conclusion that application of the

alternating method for strongly distorted signals should be used only when the optimal

value of Ta is exactly determined and set.

By using the alternating method we can increase the integration time five to ten

times in comparison to the main lobe method.

Method 3 (sequential method)

Another way of increasing integration time Ta is by using a sequential method

in which harmonics are estimated separately in groups, choosing the integration time

suitable for each group. A detailed description of the sequential method is outside the

scope of this consideration and we present only a general concept of the idea here.

In the first step of the sequential method we choose the integration time equal to

a multiple of the signal period T , then

Ta = m T,

where m ∈ N. For this value of Ta the function sinc(kθ) is equal to zero, sinc(kθ) = 0,

for all k = 1, . . . ,K and, by (3), the integration sample s0 is simply a direct measurement

of the constant component a0 and can be treated as its estimator, i.e. â0 = s0. Then a

single sample is enough to estimate the constant component a0.

In the second step of the sequential method we choose the integration time equal to

Ta = (0.5 + m) T,

where m ∈ N. For these values of Ta, the transfer functions sinc(πkθ) are equal to

zero, sinc(πkθ) = 0, for all even k, and in (17) only odd components remain. Then,

taking a proper number of such integrative samples s1, . . . , sn we can transform them

by subtracting s0

s
,

i
= si − s0, i = 1, ..., n,

and next using the transformed samples and formula (23), we obtain estimators for odd

Fourier coefficients a2l+1 and b2l+1, l = 1, 2, ... .
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For estimating even Fourier coefficients we chose another integration time, for

example

Ta = (1/3 + m)T

and take a proper number of samples. These samples should be transformed using

estimated values of the constant component and odd components of Fourier coefficients,

and next used in formula (23) to estimate even harmonics, except those which are

multiple of three. Continuing this process for other properly chosen values of Ta we

estimate the remaining components of the Fourier coefficients.

By using the sequential method it is possible to increase the integration time almost

freely, provided it is adjusted accurately to assumed values, suitable for the currently

estimated group of Fourier coefficients. The sequential method is recommended for

signals with a very stable frequency, which in precise measurements is usually the

case.

6. CORRECTION OF RECONSTRUCTED SIGNAL

Using a precise integral analog-to-digital converter it is possible to measure, in

addition to sampling, the rectified signal average (RSA)

rsa(s(t)) =
1

T

T
∫

t=0

|s(t)|dt, (27)

of the signal s(t) with much higher accuracy than that of measured samples (for me-

asuring the RSA value we can use a long integration time). This opens the possibility

to improve the results of reconstruction by correcting the estimates of Fourier coeffi-

cients. Due to sampling errors the RSA value, rsa(ŝ(t)), of the reconstructed signal ŝ(t)

is different from rsa(s(t)) and its measured value sA = rsa(s(t)) + ∆A, where the error

∆A is much smaller than errors of the integrative samples. It is reasonable to adjust

the Fourier coefficients of the reconstructed signal to obtain the corrected signal ŝc(t)

which satisfies the equation

rsa(ŝc(t)) = rsa(s(t)). (28)

The correction can be performed by using the LS method with constraints [4].

Further analysis will be performed for signals with low distortion. More specifically

we assume that the signal s(t) satisfies the conditions:

a) s(t) = 0 for t = 0,

b) s(t) ≥ 0 for t ∈<0, T0> and s(t) < 0 for t ∈<T0, T>,

where T0 ∈<0, T>. For such signals the RSA value is
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rsa(s(t)) =
1

T























T0
∫

0

s(t)dt −

T
∫

T0

s(t)dt























. (29)

By substituting the Fourier series (1) in (29), after transformations, we obtain

rsa(s(t)) = a0

(

θ0

π
− 1

)

+

K
∑

k=1

[

ak

πk
sin(kθ0) +

bk

πk
(1 − cos(kθ0))

]

, (30)

where θ0 = 2π(T0/T ). The important property of the Eq. (30) is a linear relation of

rsa(s(t)) on the Fourier coefficients a0, a1, . . . , aK , b1, . . . , bK . By (18) we substitute

in (30) into the transformed coefficients αk(θ) and βk(θ) then

rsa(s(t)) = α0

(

θ0

π
− 1

)

+

K
∑

k=1

[

αk(θ)

πk

sin(kθ0)

sinc(kθ)
+
βk(θ)

πk

(1 − cos(kθ0))

sinc(kθ)

]

. (31)

If we introduce the matrix notation

Z =

[

θ0

π
− 1,

1

π

sin(θ0)

sinc(θ)
, . . . ,

1

πK

sin(Kθ0)

sinc(Kθ)
,
1

π

1 − cos(θ0)

sinc(θ)
, . . . ,

1

πK

1 − cos(Kθ0)

sinc(Kθ)

]

, (32)

then Eq. (31) can be written in a compact form

rsa(s(t)) = Za. (33)

The corrected estimates âc of the transformed coefficients can be determined by

minimizing the residual sum of squares Q under the constraint Eq. (33) [4]. This is a

problem of finding a conditional minimum, whose solution, by the method of Lagrange

multipliers, see [3], is

âc = â + corr = â +
rsa(s(t)) − Zâ

Z(XT
X)−1

Z
T

(XT
X)−1

Z
T , (34)

where â is the vector of the transformed Fourier coefficient estimators given by (23).

In practical situations we substitute in (34) the measured value sA for rsa(s(t)). The

estimator âc is equal to the sum of two elements: estimates â and the correction term

corr. The latter one depends on the difference rsa(s(t)) − Zâ, where Zâ = rsa(ŝ(t)).

By substituting the corrected estimates âc in (1) we obtain the corrected signal

ŝc(t) and by substituting âc in (2) we obtain the corrected value of RMS.
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7. EFFECTIVENESS OF THE CORRECTION

It is important to asses the improvement in accuracy of the reconstructed signal

attained by the correction. Each Fourier coefficient is corrected by (34) to a different

degree then an aggregate measure of improvement is needed. Referring to the RMS

we define the effectiveness coefficient eff as the ratio, eff = δr/δc, where δr and δc are

relative errors of the RMS value determination from the reconstructed signal, ŝ(t), and

the corrected signal, ŝc(t), respectively. The value of eff indicates how many times the

error is suppressed by the correction.

It is a complex task to derive a general formula for eff valid for any periodic signal,

then we present two important cases using point sampling (integrative sampling with

θ = 0).

Case 1. Correction of the signal s(t) = b1 sin(ωt)

Assume that after the reconstruction we get the erroneous estimate â = b̂1 , b1 and

that the RSA value is known exactly: sA = rsa(s(t)) = (2/π)b1 (the measurement error

of sA is ∆A = 0). The elements of the constraint equation are: Z = [2/π], a = [b1]. The

design matrix X has only one column, then the term X
T

X is a number. In Equation

(34) X
T
X occurs twice in the numerator and in the denominator and reduces – as a

result the correction term corr does not depend on X and is equal to corr = b1 − b̂1,

then

âc = â + corr = b̂1 + (b1 − b̂1) = b1. (35)

Thus we get the correct result independently of the estimate b̂1 and the effectiveness

coefficient is eff = ∞.

Case 2. Correction of the signal s(t) = b1 sin(ωt) + b2p+1sin[(2p + 1)ωt]

There are two coefficients a = [b1, b2p+1]
T to estimate, p is a natural number. By

setting α = ωt we turn to the angular form s(α) = b1sin α + b2p+1sin((2p + 1)α). It is

enough to sample s(t) in the interval <0, T /2> (or in angular measure <0, π>), i.e. in

half of the signal s(t) period. T0 = T /2 then θ0 = 2π T0/T = π. We take N samples at

0, (1/N)π, (2/N)π, ..., ((N − 1)/N)π. Then the design matrix is

X =





































sin(0π/N) sin(0(2p + 1)π/N)

sin(1π/N) sin(1(2p + 1)π/N)

· · · · · ·

sin((N − 1)π/N) sin((N − 1)(2p + 1)π/N)





































. (36)

It can be proved that if the number of samples N is a multiple of 6, then

X
T
X =

N

2
I2 ⇒ (XT

X)−1 =
2

N
I2, (37)
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where I2 is a 2×2 unit matrix (this equation can easily checked for N = 6). By (32)

we obtain

Z =

[

1

π
(1 − cos π)

1

(2p + 1)π
(1 − cos(π(2p + 1))

]

=
2

π

[

1
1

2p + 1

]

(38)

and by (33)

rsa(s(t)) =
2

π

(

b1 +
1

2p + 1
b2p+1

)

. (39)

After substituting these results in (34), after transformation, we obtain the following

formulas for corrected harmonics

b̂c
1 = b1 −

1

1 + (2p + 1)2
(b1 − b̂1) +

2p + 1

1 + (2p + 1)2
(b2p+1 − b̂2p+1), (40)

b̂c
2p+1 = b2p+1 −

(2p + 1)2

1 + (2p + 1)2
(b2p+1 − b̂2p+1) +

2p + 1

1 + (2p + 1)2
(b1 − b̂1). (41)

For not strongly distorted signals, b2p+1 << b1, the third term of the right hand side of

(40) is negligible and the corrected estimate of b1 is about (2p + 1)2 times closer to

the true value that the reconstructed value.

From (40) and (41) we get the relations

δc1 =
1

1 + (2p + 1)2
δ1 −

2p + 1

1 + (2p + 1)2

b2p+1

b1

δ2p+1, (42)

δc2p+1 =
(2p + 1)2

1 + (2p + 1)2
δ2p+1 −

2p + 1

1 + (2p + 1)2

b1

b2p+1

δ1, (43)

between relative errors δ1 = (b̂1 − b1)/b1 and δ2p+1 = (b̂2p+1 − b2p+1)/b2p+1 of the

reconstructed coefficient estimates b̂1 and b̂2p+1, and relative errors δc1 = (b̂c
1 − b1)/b1

and δc2p+1 = (b̂c
2p+1 − b2p+1)/b2p+1 of the corrected coefficients b̂c

1 and b̂c
2p+1. For signals

with low distortion e f f � 1 + (2p + 1)2 and for the least profitable case, p = 1,

e f f � 10 (for p = 2, e f f � 25). Thus the accuracy of b1 estimation by the correction

is improved at least ten times, and approximately the same is the improvement of the

rms determination by (2).

8. CONCLUSION

The presented method is designed for signal reconstruction and for very accurate

RMS measurements of periodic signals. It is based on integrative sampling, and precise
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measurement of the RSA value used for correction of Fourier coefficient estimators.

The best results are obtained when the integration time is optimised by using one of the

proposed methods of choosing its value. The analysis shows that the accuracy of RMS

measurements made by commercially available apparatus and by using the proposed

estimators correction can be improved in this way as much as ten times. An important

advantage of the method is that its accuracy will increase together with improvement

of technology of analog to digital converters. This approach can be applied for precise

measurement of other important quantities as power and energy.
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