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PERIODICALLY VARIABLE TWO-TERMINAL IMPEDANCE DESCRIPTION

AND MEASURING METHODS

The subject of this paper is the problem how to describe and measure impedance of a linear

periodically time-varying (LPTV) two-terminal. If the two-terminal parameters change synchrono-

usly to the supply the two-terminal is able to reach a periodical steady state, but supplied with a

sinusoidal source produces a non-sinusoidal voltage or current. The LPTV system in the steady

state may be described with a circular parametric operator (CPO). Within the discrete time domain,

this operator takes the form of a real entries matrix.

The circular parametric operator may be transformed into the spectral circular parametric ope-

rator (SCPO) using a two-dimensional DFT. This version of description makes it possible to assess

quantitatively the LPTV system coercion and response harmonics aliasing. This paper presents two

methods of determination of the impedance CPO of the LPTV two-terminal based on current and

voltage signal measurements. The first method is designed for operating in the frequency domain,

the second one operates in the discrete time domain and takes advantage of a genuine identification

algorithm. Some results of computer simulations are presented.

Keywords: periodically time-varying two-terminal, circular parametric operator, measurement me-

thods

1. INTRODUCTION

The presence of non-linear and non-stationary components of the power system

cause distortion of current and voltage waveforms. Together with development of

methods and technology of distortion compensation, a new challenge is to measure

quantities connected with the phenomenon of creation of distortion. One of them

is measuring the distorting two-terminal impedance or admittance. The time-varying

circuits, e.g. switching converters or thyristor-driven loads, and the non-linear system

components, e.g. transformers, saturated chocking coils or diode-equipped loads change

their parameters periodically, synchronously with the power voltage. It seems that a

linear periodically time-varying (LPTV) model is the best way of power system impe-

dance description. The LPTV power system model may be introduced as a reasonable

approximation of the non-linear reality. A physically supported LPTV model is easier
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to identify than a non-linear one and may be used as well for modeling, as for the

description of real systems [1].

The frequency-domain description, analysis and interpretation of the linear time

invariant (LTI) systems is a common practice. The steady state of the LTI two-terminal

supplied with a sinusoidal voltage or current may be described by use of one complex

number, i.e. the impedance or the admittance. There are many methods of complex im-

pedance measurement. The situation is different in the case of the LPTV two-terminals

which can also reach a periodical steady state, but supplied with a sinusoidal source

produce non-sinusoidal voltage or current. It is impossible to describe such a pheno-

menon by means of one complex number. A description of the LPTV system is much

more complicated.

The ways of description of LPTV systems used in automatics, multirate signal

processing and telecommunication may be found in many publications. Some common

representations of the LPTV systems including linear time invariant models obtained by

blocking, linear switched time-varying (LSTV) systems and alias-component matrices

are described in [2] and the references therein. Subspace model identification algo-

rithms that allow the identification of a linear time-varying (LTV) state space model

from an ensemble set of input-output measurements is presented in [3]. Discrete time

LPTV systems also may be modeled by discrete time wavelets. It makes the system

identification to be robust to narrow-band or impulse noise [4]. Description of the

LPTV system as a time invariant block system is presented in [5]. These mathematical

characterizations of the LPTV system are universal but their use is not simple.

In this paper a two-terminal is treated as a single input – single output (SISO)

system in the manner presented in Fig. 1.

Fig. 1. A two-terminal treated as a SISO system.

The relationship between voltage and current of the LPTV two-terminal in the

steady state can be described by use of the so-called circular parametric operator

(CPO). It is assumed that the period of the system parameter changes is equal to the

period of voltage and current changes. This assumption is usually met in the case of
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a power system and makes the description of the variable two-terminals simple and

convenient. In the discrete time domain the CPO describes the relationship between

vectors of one period samples of the input and output signals and takes the form of a

real entries matrix. It is a generalization of the discrete circular convolution designed

for the LTI systems. The discrete time description is more useful for application in

practice. For the first time this way of system description was introduced by Siwczyński

to realize a new numerical operator method for nonlinear systems analysis described

in [6].

A spectral circular parametric operator (SCPO) which is a complex entries matrix

describes the relation between the input and output harmonics phasors of the LPTV

system. It is a generalization of a commonly used frequency characteristic of an LTI

system. It may be obtained from the CPO by use of a two-dimensional discrete Fourier

transformation.

The specific way of the variable two-terminal impedance description requires wor-

king out some measuring methods. In this paper two methods are presented. The first

one is designed to operate in the frequency domain and makes it possible to determine

entries of the SCPO on the basis of the measurements using sinusoidal coercion signals.

The other method is based on an original identification algorithm which makes use of

an ensemble set of the input-output measurements given in the form of the vectors of

voltage and current samples.

The measurement error analysis and the influence of noise on the measurement

accuracy are not the subject of this paper. It is assumed that all signals are noise-free,

coherently sampled with an adequately high sampling frequency.

2. DESCRIPTION OF THE SISO LPTV SYSTEM

The relation of the input signal x(t) to the output signal y(t) for a SISO LTV

system (Fig. 1) may be described with a differential equation of variable coefficients

q
∑

i=0

ai(t)y
(i)(t) =

q
∑

i=0

bi(t)x
(i)(t). (1)

The Equation (1) may be solved with the integral operator H

y(t) = Hx(t) =

∞
∫

−∞

h(t, τ)x(τ)dτ. (2)

The operator kernel h(t, τ) is the response to Dirac’s pulse δ(t −τ). For a time-varying

system, it is a function of two variables, i.e. it depends on the current time t and on

the moment of the pulse application τ.
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Within the domain of discrete time, the relation of the input signal x(n) to the

output signal y(n) for a SISI LTV system can be described by a difference equation of

variable coefficients

q
∑

i=0

Ai(n)y(n − i) =

q
∑

i=0

Bi(n)x(n − i). (3)

Equation (3) can be solved with the operator given in the form of the following sum

y(n) = Hx(n) =

∞
∑

m=−∞

h(n,m)x(m). (4)

The operator kernel h(n, m) is the response to Kronecker’s pulse δ(n −m). In the case

of a time-varying system, it is a function of two variables, i.e. it depends on the current

time n, and on the moment the pulse has been applied m.

The N-periodical signal, x(n+N) = x(n) can be expressed using Poisson’s formula [7]

x(n) =

∞
∑

p=−∞

⌣

x(n + pN), (5)

where the so-called segment

⌣

x (n) =















x (n) for 0 6 n 6 N − 1

0 for other n
. (6)

Applying the operator of the network (4) to the N-periodical input signal the response

may be determined using the following formula [7]:

y (n) = Hx (n) =

∞
∑

m=−∞

h (n,m)

∞
∑

p=−∞

⌣

x (m + pN) =

=

∞
∑

m=−∞

∞
∑

p=−∞

h (n,m)
⌣

x (m + pN) =

∞
∑

m′=−∞

∞
∑

p=−∞

h
(

n,m′ − pN
) ⌣

x
(

m′
)

= ,

=

N−1
∑

m′=0

∞
∑

p=−∞

h
(

n,m′ − pN
)

x
(

m′
)

=

N−1
∑

m′=0

h̃
(

n,m′
)

x
(

m′
)

(7)

where the circular pulse response is defined as

h̃ (n,m) ≡

∞
∑

p=−∞

h (n,m − pN). (8)
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If the system is N-periodically variable, the pulse response satisfies the property

h (n + N,m + N) = h (n,m) . (9)

If the period of the system parameters changes, N is equal to the input signal period,

the circular pulse response is N-periodical in n, i.e.

h̃ (n + N,m) =

∞
∑

p=−∞

h (n + N,m − pN) =

∞
∑

p=−∞

h (n,m − (p + 1)N) = h̃ (n,m) . (10)

In this case the response y(n) is N-periodical as well, i.e.

y (n + N) =

N−1
∑

m=0

h̃ (n + N,m) x (m) =

N−1
∑

m=0

h̃ (n,m) x (m) = y (n) . (11)

The N-periodical response of the system of N-periodically variable parameters to the

N-periodical coercion can be determined with use of the so-called circular parametric

operator

y (n) = H̃x (n) =

N−1
∑

m=0

h̃ (n,m) x (m), n = 0, 1, ..., N − 1. (12)

The circular parametric operator can be given in the form of the following matrix [7]





































y0

y1

...

yN−1





































=





































h̃0,0 h̃0,1 ... h̃0,N−1

h̃1,0 h̃1,1 ... h̃1,N−1

... ... ...

h̃N−1,0 h̃N−1,1 ... h̃N−1,N−1


























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
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
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



x0

x1

...

xN−1





































, (13)

where xk = x (k), yk = y (k), h̃n,m = h̃ (n,m). Or, shorter:

y = H̃x, (14)

where x, y are vectors of samples of one period of the coercion and response signals,

and H̃ is the circular parametric operator (circular parametric matrix).

For an LTI system, the pulse response is the one-variable function

h (n,m)→ h (n − m) , (15)

Then, the circular parametric matrix introduced in Eq. (13) passes to the form of the

Toeplitz (circular) matrix
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
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
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
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y1

...

yN−1




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
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=




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





























h̃0 h̃N−1 ... h̃1

h̃1 h̃0 ... h̃2

... ... ...

h̃N−1 h̃N−2 ... h̃0
































































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x0

x1

...

xN−1





































. (16)

This is a circular discrete convolution given in the matrix form.

The relation between the input and output harmonics phasors of the LPTV system

is described by a spectral circular parametric operator (SCPO). To obtain the SCPO

the relation between the input and output signals (14) has to be transferred into the

frequency domain. An N-periodic signal may be expressed by means of the Fourier

series of harmonic phasors. The analysis and synthesis equations can be described

using a Fourier matrix, i.e.

x =
1

2
FX̄, (17)

X̄ = 2F−1x, (18)

where x is a vector of samples of one period of the N-periodic signal, X̄ is a vector of

harmonic phasors and adjoint harmonics phasors, and the double value for the constant

component, F is the Fourier matrix defined as

[F]n,m = exp
(

2π
N

nm
)

, n = 0, 1, ..., N − 1, m = 0, 1, ..., N − 1. (19)

To determine the frequency domain version of the CPO, i.e. the SCPO, one should

multiply both sides of (14) by 2F−1 and substitute (17). Taking into account (18) with

reference to the signal y, it yields

Ȳ = F−1H̃FX̄. (20)

Then, the spectral circular parametric operator takes the following form [7]

H̃
(

ky, kx

)

= F−1H̃F, (21)

where kx and ky are the harmonic enumeration numbers of the coercion and response

signals.

The SCPO H̃
(

ky, kx

)

describes the relation between the input and output harmonic

phasors of the LPTV system. This matrix obtained in the other way, not based on

the circular parametric matrix, is called the alias component matrix in [8] and the

frequency-response matrix for the LPTV system in [9]. The SCPO is a complex entries

matrix. The vectors X̄ and Ȳ have a typical structure of the signal spectrum, their

complex entries fulfils the relation
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X̄ (n) = X̄∗ (N − n) , Ȳ (n) = Ȳ∗ (N − n) , (22)

where a∗ is a complex adjoint number to the a.

This is the reason why the matrix H̃
(

ky, kx

)

is pseudo symmetrical. Each element of

the SCPO matrix has his equivalent adjoint element placed symmetrically according

to the center of the matrix [10, 11]

H̃
(

ky, kx

)

= H̃∗
(

N − ky,N − kx

)

H̃ (0, kx) = H̃∗ (0,N − kx)

H̃
(

ky, 0
)

= H̃∗
(

N − ky, 0
)

for kx , ky = 1, ..., N − 1. (23)

The SCPO creates the possibility for the quantitative assessment of aliasing the

input and output harmonics. Entries of the SCPO matrix lying outside the main diagonal

qualify the manner of transformation of coercion harmonics into other harmonics of

system response. The l-th line of the spectrum matrix includes entries decisive in

the manner of processing all coercion harmonics into the l-th harmonic of system

response. The k-th column together with the (N−k)-th column of the spectrum operator

describe in which way the k-th harmonic of the coercion is processed into all response

harmonics. Each harmonic phasor of the response signal is dependent on each coercion

harmonic through two complex coefficients multiplied by the harmonic phasor and the

adjoint harmonic phasor, respectively. This is the way of expression of the LPTV system

time dependence described by the SCPO. That is why it is impossible to describe an

LPTV system using a single one-dimensional frequency response typical for the LTI

system.

For an LTI system, the matrix H̃ is circular (16) and after its transformation

into the spectrum domain according to (21), the matrix H̃
(

ky, kx

)

takes the form of a

diagonal matrix. In this case the “separation” of harmonics, typical for the LTI system,

is clearly visible. Diagonal entries of this matrix make up the frequency response of

the LTI system.

3. THE LPTV TWO-TERMINAL IMMITANCE MEASUREMENT

The result of an LTI two-terminal impedance measurement is one or two real num-

bers, i.e. module and phase. The sinusoidal current coercion of the LPTV two-terminal

produces the non-sinusoidal (polyharmonic) voltage response. The impedance of the

LPTV two-terminal for a given frequency of sinusoidal current coercion must be defi-

ned as a group of numbers, e.g. one column of the impedance SCPO. Determination of

the LPTV two-terminal impedance operator takes the form of an identification process

based on the measurements.
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3.1. The frequency domain method

To determine the q-th column of the impedance SCPO some actions must be realized

according to the following algorithm.
1. The two-terminal should be supplied two times with two sinusoidal currents of

given frequency, of two different phases (needed data: current phasors Iq1 and Iq2).

2. Each time the voltage signals should be measured (obtained data: one period voltage

sample vectors u1(n) and u2(n)).

3. The voltage harmonic phasors should be determined using DFT (obtained data:

voltage harmonic phasors Up1 and Up2 for p = 0, 1, ..., N
2
).

4. The SCPO entries may be determined by solving N /2 complex linear equations of

the form















Iq1Z̃p,q + I∗q1Z̃
∗
N−p,q = Up1

Iq2Z̃p,q + I∗q2Z̃
∗
N−p,q = Up2

for p = 1, 2, ..., N
2

(24)

and for the direct component, of the form















Iq1Z̃0,q + I∗q1Z̃
∗
0,N−q = U01

Iq2Z̃0,q + I∗q2Z̃
∗
0,N−q = U02

. (25)

To determine the whole SCPO the above-mentioned algorithm has to be repeated

for columns number q = 0, 1, ...,N /2. The other half of the operator is determined

using the relationship (23).

3.2. The time domain method

Determination of the LPTV two-terminal impedance CPO sometimes cannot be

based on the sinusoidal coercions, e.g. the power system impedance measurement [12,

13]. In this case the following identification algorithm operating in the discrete time

domain can be used.

The circular parametric operator may be determined on the basis of the set of K

measured coercion signals X and the set of K related response signals Y. The following

relation implied by (14) is used here:

H̃X = Y, (26)

where H̃ is the sought for circular parametric operator, X is a matrix of K input signals,

each column is a vector of one input signal samples, and Y is a matrix of K system

response signals.

In the case where K = N , i.e. the number of coercion and response signals K

equals to the size N of the square circular parametric matrix, the problem has an

unequivocal solution:
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H̃ = YX−1
, (27)

which depends on the condition meaning the linear independence of the coercion

signals

det X , 0. (28)

In the case where K < N , the matrix Eq. (26) has an infinite number of solutions.

The optimal solution should be chosen. One can propose to seek for an operator which

describes a system with the smoothest changes of parameters. With consideration for

(26), the optimization problem may be originally defined as

(

∆h̃n

)T
∆h̃n → min, (29)

XT h̃n = yn, (30)

where h̃n =
[

h̃n,0 h̃n,1 ... h̃n,N−1

]T
is a vector of entries of the n-th line of matrix

H̃, and yn =
[

yn,0 yn,1 ... yn,K−1

]T
is a vector of n-th samples of all K response

signals (entries of the n-th line of matrix Y). The vector of increments of H̃ entries

for the n-th line is defined as

∆h̃n =
[

∆h̃n,0 ∆h̃n,1 ... ∆h̃n,N−1

]T
, (31)

∆h̃n,m = h̃n,m − h̃n(−)1,m(−)1, (32)

where (-) is a subtraction mark of modulo N . The vector ∆hn may be also defined with

the use of a circular unit delay matrix of the form

P1 =





































0 ... 0 1

1 ... 0 0

... ... ...

0 ... 1 0





































, (33)

i.e.

∆h̃n = h̃n − P1h̃n−1. (34)

The criterion (29) means minimization of increases of matrix H̃ coefficients in

the direction of the main diagonal. Such criterion choice originates from the fact that

in case of a linear time invariant system (LTI) the relationship between signals of

the coercion and response is described in the periodic steady state by means of the
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circular matrix (16). Then, the increases of entries defined by means of (32) are equal

to zero. A choice of the criterion (29) means the research of the circular parametric

operator describing the system of the least variability of parameters, realizing (26).

The Equation (30) results from (26).

The optimizing problem given by (29) and (30) may be solved using Lagrange

method in the manner given by the author of [6, 7, 11]. The method is described in

[11, 14, 15]. The result is the iterative solution

h̃n =

(

1 − X
(

XTX
)−1

XT
)

P1h̃n−1 + X
(

XT X
)−1

yn, (35)

where 1 is a unit matrix of a proper dimension.

In order to effect the iterations, the invertibility of the matrix (XT X) is necessary,

thus, the following condition must be fulfilled

det
(

XT X
)

, 0. (36)

This requires linear independence of the coercion signals included in the matrix X.

The obtained identification algorithm (35) has a standard form of a discrete state

equation

v (n + 1) = Av (n) + Bu (n) , (37)

where

A =

(

1 − X
(

XT X
)−1

XT
)

P1, (38)

B = X
(

XT X
)−1
. (39)

The convergence of the iterations (35) depends on the eigenvalues of the matrix A.

The construction of the matrix A (38) turns its eigenvalues to be

|λi | 6 1 i = 1, 2, ...,N, (40)

independently of the shape of the signals included in the matrix X [16]. In the situation

when |λi | = 1, the solution of a homogeneous system is of a periodic signal form. To

avoid this unwanted component of the solution to appear, the required form of the

initial vector is, x (0) = [0, 0, ..., 0]T , i.e. for the iterations (35) it is

h̃0 = [0, 0, ..., 0]T
, (41)

The eigenvalues of the matrix A (38), of the absolute value |λi | = 1 take the form

λk,N−k = e
± j

2π
N

k
(42)
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and appear if none of the periodic signals in the matrix X include the k-th harmonic

[16]. If any |λi| = 1 then the solution of the non-homogeneous system (37) may aim

at infinite amplitude. It is possible if the vector

r (n) = Bu (n) = X
(

XT X
)−1

yn, (43)

which is the element of v(n + 1) (i.e. for iterations (35) – the element of h̃n), includes

at least one harmonic of the angular frequency equal to the eigenvalue of the matrix A

of the (42) form. On the other hand, the vector r(n) (43) is a linear combination of the

signals located in X and does not include the k-th harmonic of the angular frequency

corresponding to the eigenvalues of the (42) form. This means that the identification

algorithm (35) is not divergent and is convergent to an N-periodical solution [16].

Identification of the circular parametric operator consists of iterative determination

of the matrix lines with reference to the previous lines. Each line of the matrix H̃

obtained from the iteration fulfils Eq. (30) and the optimizing criterion (29). The

iterations should be realized until they obtain the N-periodical steady state. It means

that for each element of the line h̃n after N iterations nearly the same result is obtained

with specified accuracy

∣

∣

∣h̃m+N,n − h̃m,n

∣

∣

∣ 6 ε n = 0, 1, ...N − 1, (44)

where ε is a satisfactorily small deviation value.

The suitably specified one period of the iterations makes up the determined CPO.

4. NUMERICAL SIMULATIONS

Some numerical experiments were carried out to check the correctness of opera-

tion and properties of the presented methods. By use of a discrete simulation of an

analog system the CPO of a simple two-terminal was determined. It will be named the

“original” one. The diagram of the two-terminal and its parameters periodic changes

functions are presented in Fig. 2. Graphs of the LPTV two-terminal impedance CPO

Z̃ (n,m) and of the SCPO magnitude
∣

∣

∣Z̃ (kU , kI )
∣

∣

∣ are presented in Fig. 3.

These two presented methods were tested and compared by determining the SCPO

column. Two sinusoidal coercion current signals of different phase were used. The re-

sponse voltage signals were obtained by operating the original CPO on the coercion

signals. Using the identification algorithm the identified impedance CPO was deter-

mined and using 2D DFT the identified SCPO was calculated. They are presented in

Fig. 4. The obtained SCPO includes only two non-zero columns related to the coercion

frequency. The identification algorithm input data carried only this information. The

same two SCPO columns were determined using the frequency domain method as well.

Characteristics of the methods’ error obtained by using clear and disturbed sinusoidal

coercion signals are presented in Fig. 5.
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Fig. 2. Diagram of the LPTV two-terminal that is used as an example and the functions of periodic

changes of the elements parameters.

Fig. 3. Graph of the “original” impedance circular parametric operator Z̃ (n,m) and the “original”

spectral circular parametric operator magnitude
∣

∣

∣Z̃ (kU , kI )
∣

∣

∣ of the LPTV two-terminal.

Fig. 4. Graph of the impedance circular parametric operator Z̃ (n,m) and the spectral circular parametric

operator magnitude
∣

∣

∣Z̃ (kU , kI )
∣

∣

∣ obtained from the identification based on two sinusoidal coercion signals.



Periodically variable two-terminal impedance description... 387

Fig. 5. Characteristics of methods error of one column of the SCPO determination using presented

methods based on the sinusoidal coercion signals: a) non-disturbed, b) disturbed with a harmonic signal

of different frequency, c) disturbed with a noise (random) signal, d) disturbed with a different frequency

harmonic signal and with a noise (random) signal (ident – identification algorithm, spect – spectral

domain determination).

The identification algorithm operating in the time domain can be used for the CPO

determination on the basis of N-periodic signals of any shape. The only restriction is

the linear independence of the used coercion signals. Some CPOs and SCPOs obtained

as the result of the identification algorithm based on the different numbers of noise

(random) signals are presented in Fig. 6. Results of these operators’ operation on

the periodic rectangular impulse and the sinusoidal signals are shown in Fig. 7. The

response voltage signals obtained by operation of the original operator and the identified

operator on the test coercion signals are compared.
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a) b)

c) d)

e) f)

Fig. 6. The CPOs (graphs a), c) and e)) and SCPOs (graphs b), d) and f)) obtained as the results of the

identification algorithm based on the different numbers of noise (random) signals: a), b) – 3 signals;

c), d) – 10 signals; e), f) – 30 signals. The dimension of operators is 50×50.
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Fig. 7. Comparison of the response voltage signals obtained by operating of the original operator

(symbol “uto”) and of the identified operator (symbol “uti”) on the test coercion signals (symbol “it”).

Identification based on the different numbers of noise (random) signals: a) – 3 signals; b) – 10 signals;

c) – 30 signals.

5. CONCLUSIONS

The use of the circular parametric operator to describe the relation between termi-

nal signals of the periodically time-varying two-terminal network seems to be a good

practical solution. Within the domain of discrete time, such operator takes the form of

a real element matrix. It is very convenient if discrete signal processing may be used.

The spectral circular parametric operator gives the quantitative assessment of aliasing

of the input and output harmonics, the phenomenon characteristic for time-varying

and non-linear systems. Two methods of the LPTV two-terminal impedance CPO de-

termination based on the current and voltage signals measurement were presented.

The frequency domain method requires sinusoidal coercion and can be used for the

determination of the LPTV two-terminal impedance for a selected frequency. The

time domain method based on the genuine identification algorithm may be used for

determination of the whole impedance CPO. It brings the expected results only if the

identification data i.e. the current and voltage measured signals include the necessary

portion of the information about the performance of the two-terminal being identified.
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