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INFLUENCE OF THE STRUCTURE OF SIGNAL CONDITIONING CIRCUITS ON
THE UNCERTAINTY OF IMPEDANCE MEASUREMENT WITH ALGORITHMIC

METHODS

The article presents an estimation of the impedance measurement uncertainty determined in the
measurement circuit with a two-channel sampling transducer. Using the Monte Carlo method, the
influence of dynamic error and quantization error on the probability distribution of the impedance
components error has been analysed. Comparison of these errors propagation has been made for
three structures of conditioning circuits of voltage and current signals on measured impedance.
On the basis of the obtained probability distribution, the value of the expanded uncertainty of
impedance components has been determined.
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1. INTRODUCTION

Application of measurement circuits with analog-to-digital processing enables to
use appropriate digital processing algorithms of sampled measurement signals to de-
termine the values of impedance components [1–7]. There are many processing algo-
rithms used while feeding the measured impedance with sinusoidal voltage or current.
In order to determine the instantaneous values of voltage and current in the measured
impedance, a two-channel data acquisition system with simultaneous sampling in both
channels should be used. Additionally, the processing algorithms are simplified in
synchronous sampling conditions with the frequency of the generator that feeds the
measured impedance. For initial processing of the current flowing in the measurement
circuit into voltage, a standard resistor in series or active I/V converter are used [1–7].
Additionally, the values of converted signals should be properly scaled depending on
the range of the A/D converters in use. The calculation of impedance component
values should be then preceded by an appropriate reconstruction algorithm of instan-
taneous values of voltage u(t) and current i(t) on the measured impedance Z = R+ jX.



530 J A

A block diagram of the measurement circuit, that takes into account the presented
basic processing steps, is shown in Fig. 1.

Fig. 1. Block diagram of the circuit for impedance component calculation.

Depending on the applied structure of conditioning circuits, the form of recon-
struction algorithms is subject to change. Due to the fact that the input circuit structure
must be taken into consideration, their mathematical models forms are also different,
which as a consequence can have a significant influence on probabilistic properties of
the measurement errors.

Apart from the errors introduced by conditioning circuits of voltage and cur-
rent, during estimation of the uncertainty of final measurement result one should also
consider the errors resulting from the application of sample/hold circuits as well as
analog-to-digital converters [6, 8–9]. Moreover, due to the approximate form of de-
pendencies describing the way of processing sequences of quantized samples, the
processing algorithms introduce an additional measurement error. Thus, the output
quantities vector y = [R, X]T, calculated in accordance with the assumed processing
algorithm, contains errors which are the consequence of composing both the errors
of the sampling transducer propagated through successive elements of the processing
channel and own errors of the algorithm.,

For the successive instants n = 0, 1, ..., N − 1, the reconstruction algorithm can
be described by the matrix equation

[

u(n), i(n)
]

=
[

x1(n), x2(n)
]

T, (1)

where x1(n), x2(n) are the analog-to-digital processing results, u(n), i(n) are the pair
of reconstructed values of voltage and current, and T is the 2×2 – dimensional trans-
formation matrix with elements depending on the structure of the conditioning circuits
of voltage and current [5–6].

The processing algorithm is given as a matrix equation















R

X















= F( u i ). (2)

where the column vectors u and i contain the reconstructed values of voltage and
current, and R, X are the calculated impedance components.
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One of the methods that enables the estimation of measurement uncertainty in
the circuit composed of a sampling transducer and the processing algorithm is the
application of probability distribution propagation rule as the basis for uncertainty de-
termination. For this purpose the Monte Carlo method is applied, using a mathematical
measurement model [8–12]. In this paper the influence of the structure of conditio-
ning circuits of voltage and current on the probabilistic properties of the impedance
component measurement results has been analysed.

2. RESULTING ERRORS OF SINGLE SAMPLE PROCESSING IN THE
TWO-CHANNEL SAMPLING TRANSDUCER

Each of the two channels of the sampling transducer processes the instantaneous
values of voltage u(t) or current i(t) connected with the measured impedance Z into
sequences {x1(n)} and {x2(n)} of the output signal values of the A/D converters, de-
termined at the sampling instants n = 0, 1, ..., N − 1. The basic error components
appearing at the output of such a converter are related to the dynamic properties of
the conditioning circuit and the quantization process [8–9].

As the frequency band of the operational amplifiers used in the conditioning circu-
its is limited, there are three basic types of circuits (Fig. 2) differing in their dynamic
properties.

The description of dynamic properties of the sampling transducer is most frequen-
tly assumed as a first-order linear differential equation. In the case of voltage channels
(with differential or single-ended input) its spectral transmittance can be modelled by

K
i
(j f ) =

K0i

1 + j f

fgi

, (3)

where K0i is the static sensitivity and fg is the cut-off frequency of the amplifier in ith

processing channel (i = 1, 2).
After taking into account the gain bandwidth product fT , which describes the

frequency properties of operational amplifier, Eq. (3) is given as

Ki(j f ) =
K0i

1 + j f

fT
K0i

. (4)

The result of the transmittance form (4) is the value of the complex dynamic error
at the output of the sampling transducer

∆d
xi

(j f ) = X̃
i
(j f ) − X

i
(j f ) = −U

i

j f

fT
K2

0i

1 + j f

fT
K0i

, (5)



532 J A

where the value of the output signal of the sampling transducer with dynamic error
is marked with a tilde, X

i
(j f ) is the complex value of the output signal of an ideal

transducer (with unlimited frequency band), and U
i

is the complex value of the input
voltage of ith sampling transducer channel.

Fig. 2. Structure of the signals conditioning circuits: with series resistor and two voltage channels with
differential inputs (a), with series resistor and two voltage channels with single-ended inputs (b), with

one voltage channel with single-ended input and active I/V converter (c).

If the active converter is used in the current channel (Fig. 2c), the corresponding
transmittance can be presented as

K2(j f )c = −
RN

1 + j f

fT

, (6)

and the value of the dynamic error is then equal to

∆d
x2(j f )c = IRN

j f

fT

1 + j f

fT

, (7)
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where RN is the static transresistance of the I/V converter, I is the complex value of
current flowing through the measured impedance, and subscript c denotes the condi-
tioning circuit presented on Fig. 2c.

Simultaneously, in case of using an active I/V converter, in the measurement model
one should consider its input impedance

Z
in

(j f )c = RN

j f

fT

1 + j f

fT

, (8)

which influences the value of the dynamic error in the voltage measurement channel.
For sinusoidal signals, the dynamic error in the time domain can be shown as

∆d(t) = Ed sin(ωt + ϕd), (9)

where: Ed = |∆
d(j f )| and ϕd = arctg

Re{∆d(j f )}

Im{∆d(j f )}
.

If the sampling instant of measured waveforms is selected randomly from the
population with uniform distribution, the probability density function (PDF) of the
dynamic error of a single processing result of instantaneous signal values in every
channel of the sampling transducer is described by the bimodal function

g
(

∆d
xi(t)
)

=
1

π

√

E2
di
−
(

∆d
xi

(t)
)2
. (10)

Application of the reconstruction algorithm (1) can lead to correlation of reprodu-
ced signals of voltage and current [5]. Probabilistic properties of a single processing
result is then described by joint PDF of random vector [u, i]: g[u,i](x1, x2).

For each of the analysed structures of the conditioning circuit the corresponding
dynamic error vector can be constructed:

[

∆d
x1, ∆

d
x2

]

=
[

X̃1(j f ), X̃2(j f )
]

−
[

X1(j f ), X2(j f )
]

. (11)

Hence, after considering dynamic properties of the used operational amplifiers,
described by the transmittance (4), (6) and the input impedance (8), one obtains the
following equations:

[

∆d
x1, ∆

d
x2

]

a
=
[

U(j f ), I(j f )
]
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[

∆d
x1, ∆

d
x2

]

b
=
[

U(j f ), I(j f )
]
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[

∆d
x1, ∆

d
x2

]

c
=
[

U(j f ), I(j f )
]
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Subscripts a, b, c in Eqs. (12) – (14) denote the adequate conditioning circuits
presented in Fig. 2a-c respectively.

As a result of propagation of these errors by the reconstruction algorithm (1)
one obtains the complex dynamic errors of voltage and current measurement on the
impedance Z , defined as a matrix equation

[

∆d
U
, ∆d

I

]

=
[

Ũ(j f ), Ĩ(j f )
]

−
[

U(j f ), I(j f )
]

. (15)

These errors can be determined after taking into account an appropriate transfor-
mation matrix in Eqs. (12) – (14). For the conditioning circuit shown in Fig. 2a, the
transformation matrix is equal to

Ta =
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In case of application of the conditioning circuit illustrated in Fig. 2b, the trans-
formation matrix can be presented as

Tb =
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For the circuit with active I/V converter (Fig. 2c), the corresponding transformation
matrix can be written in the form
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Hence, the suitable vectors of complex dynamic errors of reconstructed voltage and
current values are equal to:

[
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For a diagonal transformation matrix and the conditioning circuit with two voltage
channels with differential input (Fig. 2a), the reconstructed voltage and current signals
depend only on one of the input signals; thus the corresponding PDFs are independent.

The value set of the quantization error ∆q(t) of the sampling transducer can be
described by a uniform distribution [9, 13]. For a two-channel sampling transducer
one obtains the bivariate distribution of random vector of quantization error [∆q

x1(t),
∆

q

x2(t)]. In this paper the assumption is that sampling occurs simultaneously in both
transducer channels. Propagation of this error by the reconstruction algorithm chan-
ges its probabilistic properties. Thus, the PDF of random vector [∆q

u(t), ∆q

i
(t)] is a

composition of error distributions ∆q

x1(t), ∆
q

x2(t).
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The resultant error of a single processing result of vector [u, i] is characterized
by the PDF resulting from the distribution composition of dynamic and quantization
errors [9].

In order to determine the processing uncertainty of a single measurement result
of voltage and current, a simulation experiment has been carried out. It was assumed
that the dynamic parameters of operational amplifiers (the same for both channels of
the sampling transducer) are equal to: fT = 2 MHz, K0i = 1. The analyzed impedance
equal to Z

sim
= (1000 − j1000) Ω has been fed from a sinusoidal voltage source with

amplitude UGm = 5 V and frequency f = 1000 Hz. To minimize errors introduced
by the signal conditioning circuit it was assumed that the standard series resistor
(Fig. 2a,b) and the static transresistance of the I/V converter (Fig. 2c) comes to
RN = |Z sim

|. Moreover, one assumed that the input ranges of two 12-bit A/D conver-
ters correspond to the amplitudes of quantized waveforms. Simulations were repeated
100,000 times, randomizing the sampling instant of input waveforms (simultaneously
in both transducer channels) from the population with uniform distribution in the range
from 0 to T (T = 1/ f ). The results of this experiment in a form of bivariate histograms
of dynamic error [∆d

u , ∆d
i ], quantization error [∆q

u, ∆q

i
] and resultant error [∆c

u, ∆
c
i ] of

a single processing result of two-channel sampling transducer have been presented in
Figs. 3 and 4.

Fig. 3. Histograms of the single result error of the sampling transducer (for the circuit presented in
Fig. 2b): dynamic error (a), quantization error (b).

Fig. 4. Histograms of the resultant error of single sample processing in the two-channel sampling
transducer for analysed conditioning circuits.
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3. UNCERTAINTY ESTIMATION OF FINAL PROCESSING RESULT

To determine the impedance components values, when a linear, stationary and
passive two-terminal network is stimulated with a sinusoidal wave with the specified
frequency f , many processing algorithms of the reconstructed sample sequences of vol-
tage {u(n)} and current {i(n)} signals are used [1–7]. One of the most popular methods
of determining the impedance components consists in the application of impedance
definition:

Z =
U

I
= R + jX =

UcIc + UsIs

I2
c + I2

s

+ j
UsIc − UcIs

I2
c + I2

s

, (22)

where Uc, Us, Ic, Is, are the complex components of voltage and current.
To calculate these components the discrete Fourier transform (DFT) [4–5] is used.

If the N samples of voltage and current are taken in a time corresponding to the total
period multiple T of the feeding voltage generator, components of complex DFT for the
fundamental harmonic f correspond to the values of voltage or current components:

U∗ =
2
N

DFT[1,u], I∗ =
2
N

DFT[1, i] , (23)

where: DFT[k,u] =
N−1
∑

n=0

e−j 2π
N

knu(n), DFT[k, i] =
N−1
∑

n=0

e−j 2π
N

kni(n), U∗ = Uc − jUs,

I∗ = Ic − jIs.
The impedance components uncertainty calculated on the basis of the algorithm

described by Eqs. (22) and (23) depends on the propagation result of N single sample
processing PDFs of the two-channel sampling transducer by the processing algorithm
as well as the uncertainty connected with the own error of the applied algorithm [8,
10, 13].

Estimation of the influence of the sampling transducer properties and the applied
processing algorithm on the PDF of determined impedance components can be obtained
with the simulation research method. For the transducer’s parameter values presented
in Chapter 2 the simulation experiment has been carried out, additionally taking into
account that signals sampling in both processing channels has a frequency of fs = N f .
Simulations were repeated M = 100.000 times, changing randomly the instant of taking
the first sample of input waveforms (simultaneously in both transducer channels) in
the range from 0 to T . As a result one obtained two matrixes containing M-elements
random samples of N-elements output signals sequences of the A/D converters {x1(n)}m
and {x2(n)}m:
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where {x1(n)}m and {x2(n)}m are the sequences containing signal samples obtained in
m-trial.

Then, after application of the reconstruction algorithm the described components
calculation algorithm has been used. The result of this calculation are M-element
samples of the impedance components values. The resultant error of determining each
of the components ∆Rm, ∆Xm has been calculated as follows

∆Z
m
= ∆Rm + j∆Xm = Z

m
− Z

sim
, m = 1, 2, ..., M, (25)

where index m denotes the impedance value and error determined on its basis, obtained
in m-trial, whereas Z

sim
is the impedance value used for simulation calculation.

The error sets obtained this way have been arranged in order to get histograms. The
bivariate histograms of resultant error ∆Z for the analyzed structures of conditioning
circuits are presented in Fig. 5.

Fig. 5. Histograms of the resultant error of measured impedance ∆Z for the algorithm (22), calculated
by the simulation method (for N = 20 samples) for analyzed conditioning circuits.

Univariate PDFs for the real and imaginary component of error ∆Z are the marginal
PDFs towards each of the components. Histograms presenting such distributions can be
obtained by arranging the sets of error results separately for each of the components.
An example of such a histogram for the real component error is shown in Fig. 6.

Additionally, Fig. 7 illustrates empirical cumulative distribution functions (CDF)
of the real component errors G(∆R) for the analyzed algorithm (for N = 20 samples)
in dependence on the applied conditioning circuit.

The CDFs of errors for the imaginary component G(∆X), with regard to the im-
pedance phase angle value (ϕ = −π/4), taken for simulation, do not differ significantly
from the characteristics presented in Fig. 7. If the conditioning circuit with active
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I/V converter is used (Fig. 2c), one obtains results burdened with a systematic error
connected with the input impedance of the I/V converter. In the analyzed example
Z

in
� j0, 71 Ω. This error can be eliminated by using an amplifier with differential

input in the voltage measurement channel.

Fig. 6. Error ∆R histogram of the impedance real component for the algorithm (22), calculated by the
simulation method for N = 20 samples. Probability density curve fitted for normal distribution with

standard deviation σR = s̄R is denoted with a solid line.

Fig. 7. Empirical cumulative distribution curves for impedance real component error G(∆R) calculated
for the conditioning circuits shown in Fig. 2a-c respectively.

The measurement result should be given together with its uncertainty estimation.
If the PDF of the measurement result error is known, on the basis of the CDF of
random variable G(∆), one can determine the confidence interval ∆α at confidence
level α [11–12]. After elimination of possible systematic errors, for the symmetrical
to zero PDF the confidence interval can be calculated from the equation

G(∆α) −G(−∆α) = α. (26)

For an error described with normal distribution, the confidence interval ∆α deter-
mined on the basis of Eq. (26) corresponds to the expanded uncertainty U with the
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coverage factor kα. Table 1 shows the values of confidence intervals ∆α(R) (at confiden-
ce level α = 0, 95) determined on the grounds of (26) with the expanded uncertainty
values for kα = 2. To estimate the uncertainty u(R) the experimental standard deviation
s̄R has been applied [14].

Table 1. Confrontation of confidence intervals ∆α(R) at confidence level α = 0, 95 and expanded
uncertainty U(R) = 2u(R) for conditioning circuits under test.

Conditioning circuit
N = 4 N = 20 N = 100

U(R) ∆α(R) U(R) ∆α(R) U(R) ∆α(R)

Fig. 2a 0,563 0,541 0,247 0,244 0,111 0,110

Fig. 2b 1,036 0,998 0,462 0,449 0,208 0,205

Fig. 2c 0,565 0,544 0,249 0,244 0,108 0,106

4. CONCLUSIONS

In this paper the influence of the structure of signal conditioning circuits on the
measurement uncertainty of impedance components has been presented. As a result of
application of the Monte Carlo method, bivariate histograms of dynamic and quantiza-
tion error for two-channel sampling transducer have been obtained. The resultant error
of a single processing result of such a converter is characterized by the bimodal PDF.
As a result of such an error propagation by the reconstruction algorithm, PDFs with
different properties are obtained (Fig. 4). The application of the impedance components
determining algorithm for N-element sequences of such processing results enables to
calculate impedance component values. The measurement errors of these components,
independently on the applied conditioning circuit, are characterized by the distribution
which is similar to bivariate normal distribution (Fig. 5). It enables the calculation
of confidence intervals on the basis of the uncertainty determined by method A and
an appropriate coverage factor [14]. According to the results of the comparison of
confidence intervals and expanded uncertainty (Table 1) as well as diagrams of empi-
rical CDFs of errors (Fig. 7), the conditioning circuit with single-ended voltage inputs
(Fig. 2b) for the same processing channel parameters is characterized by almost twice
as high uncertainty value as the rest of the analysed circuits. Simultaneously, on the
basis of the research, one can draw the conclusion that the application of the active I/V
converter (Fig. 2c) causes systematic error of the impedance component measurement.
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