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LIFTING BASED COMPRESSION ALGORITHM FOR POWER SYSTEM SIGNALS

The paper concerns the problem of power system signals compression with possible application 
in system monitoring and control. The proposed compression algorithm for power system signals 
ensures effi cient use of available storage memory or communication channel bandwidth. It is 
shown that while preserving good quality, compression ratios from 20 in case of highly distorted 
waveforms to 340 for slightly distorted sinusoidal waves can be achieved. The presented results 
were evaluated with a specially prepared representative database of fi eld- recorded electric signals. 
For signal decorrelation lifting implementation of wavelet transform in the compression algorithm 
was used. The infl uence of sampling frequency, length of data frame, type of wavelet function, 
number of wavelet decomposition stages and quantization level on the compression ratio and 
compression quality was investigated.
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1. INTRODUCTION

Most currently available long term power system monitoring equipment does not record 
time signals but only some parameters evaluated from the signal. Such an approach signifi cantly 
reduces the amount of data to be stored or transmitted which is a strong advantage, but at the 
same time a lot of information is lost. The two examples of above methodology are synchronized 
with GPS time wide area measurements by PMU (Phasor Measurements Units) [1] and THD 
(Total Harmonic Distortion) measurements [2].

In the fi rst case the signal is represented by DFT (Discrete Fourier Transform) as a complex 
phasor and thus the whole fundamental frequency period is represented by modulus and angle. 
This ensures a high compression ratio (if the signal were sampled with 2000 samples per 
fundamental frequency period, the compression ratio would be CR = 1000). There are signifi cant 
drawbacks of phasor measurements: 1. the whole information about the spectrum of the signal 
(e.g. harmonics and interharmonics) is lost except the fundamental frequency component, 2. 
short duration time phenomena like transients are averaged and lost, 3. measurement is sensitive 
to fundamental frequency deviation.
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In case of THD measurement the output value of THD does not carry the information which 
harmonics exceeded available levels.

Parameters of power system signals [3] always introduce some loss of information about 
the time signal, in the sense that the same parameters may be evaluated from different  electric 
power signals as discussed in two examples above.

The most precise description of an electric power system is in the form of voltage and 
current time signals in this system. Straightforward recording or transmitting of time signals 
would require very large storage capacity or a high speed communication channel. Thus for 
effi cient data storage or transmission, signal compression is required. As an example consider 
acquisition of voltage and current in a three-phase power system with a sampling frequency 
fs = 10 kHz and 16 bit ADC (Analog to Digital converter). Each second requires 6×16×10000 = 
960000 bits or 0.12 MB of storage memory. This gives 7.2 MB per 1 minute, 432 MB per 1 hour 
and 10.4 GB per day (24 h) of needed storage memory in the data acquisition system.

Rapid development of digital technology especially in the media business (i.e. digital 
photos, audio and video) stimulated the development of sophisticated compression algorithms 
like the JPEG and MPEG families [5, 6]. Many publications were also devoted to compression 
algorithms designed for specifi c, digitally acquired signals like power signals, biomedical signals 
etc. Signifi cant popularity in the fi eld of signal compression was gained by DWT (Discrete 
Wavelet Transform). The main advantage of DWT is the ability to concentrate the signal energy 
in a small number of wavelet coeffi cients, thus enabling effi cient lossy compression by neglecting 
coeffi cients with small amplitude with simultaneous good quality. The basic works related to 
DWT are [7, 8] where the theoretical background of wavelet theory is presented including most 
popular wavelets and the Mallat algorithm (pyramid decomposition). An extension of Mallat’s 
algorithm is called WPT (Wavelet Packet Transform) and was introduced in [9].

A number of compression algorithms was design based on DWT. The most specifi c are EZW 
[5, 6] (Embedded Zero tree Wavelet) coding algorithms that posses the feature of progressive 
coding (i.e. the signal can be reconstructed with progressive quality from the beginning of the 
bitstream). The applications of DWT for compression range from 1D (dimensional) data as: 
seismic data, speech signals, biomedical signals (e.g. ECG [10-13] (electrocardiogram), ECF 
(electroencephalogram)) power system signals [14-17] and other by 2D images (fi ngerprint 
compression, JPEG2000 standard) to 3D images (CT computed tomography data). A nice 
feature of wavelets is that algorithms design for one class of signals e.g. ECG can be used 
almost straightforward for another class e.g. power signals with minor modifi cations. DWT-
based compression algorithms can be viewed as general purpose ones for data containing local 
phenomena, such as disturbances in power signals.

The query wavelet & compression & power system returns from http://ieeexplore.ieee.org 
database 32 answers. Among them only a few papers are dedicated to compression of power 
signals with wavelet transform in different implementations (e.g. DWT, WPT, multiwavelet, 
S-transform and slantlet) and none of them is devoted to lifting-based computations.

The paper [14] presents a DWT-based compression algorithm for power system disturbance 
data. Three-level wavelet decomposition with four-coeffi cient Daubechies’ fi lter was used. 
This wavelet is not symmetric which is a disadvantage in most applications, especially when 
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dealing with signal borders, and was the reason of designing symmetrical biorthogonal wavelets. 
Compression was achieved by the hard thresholding method. Signifi cant detail coeffi cients were 
stored together with their positions. Compression ratios for the analyzed three test signals, each 
containing 1536 samples, were equal to 5.32, 5.73 and 2.90 with a NMS (Normalized Mean-
Square) error 2.52x10-5, 3.1x10-5 and 4.88x10-5 respectively. One can easily estimate the lower 
and upper bound, not evaluated by the authors, for an algorithm compression ratio proposed in 
[14]. In case of a pure sinusoidal signal all detail coeffi cients would be discarded (provided that 
the sampling frequency was high enough and fundamental frequency occupies an approximation 
subband on the 3-rd level) and the resulting upper bound for compression ratio is 8, as only 
a smoothed signal of scale 3 would be needed for reconstruction. In the worst case when all 
detail coeffi cients appeared signifi cant under the selected threshold, the algorithm would appoint 
annotated positions to all detail coeffi cients and the data fi le would be actually 1.875 times 
bigger than the original data fi le!

In [15] the compression properties of the DWT and WPT were examined for one signal 
acquired from the DFR (Digital Fault Recorder). The compression algorithm was based on DWT 
or WPT decomposition, hard thresholding and entropy encoding by a LZW algorithm. Wavelet 
coeffi cients insignifi cant under a predetermined threshold were set to zero. For algorithm 
presentation a 512-point DFR signal sampled at 2400 Hz with 12-bit resolution was selected. 
This test signal (shown in Fig. 6 [15]) possesses values close to zero in almost half of its duration 
which may result in high compression (no information in this part of the signal!) i.e. overoptimistic 
results. A Daubechies 20 (non-symmetric) wavelet was selected for DWT and WPT. The number 
of decomposition levels was not specifi ed by the authors. The quality of lossy compression 
was measured by the NMS error. The compression ratio CR was defi ned as the number of all 
signal samples (i.e. 512) divided by the number of retained wavelet coeffi cients. For the above 
conditions CR = 10 with NMS -48 dB was obtained. Next, an application of the compression 
algorithm for modem transmission was presented. In this case one record of voltage and current 
channels, each having 4096 integer (word) samples (8192 bytes) was used. A Daubechies 
12 (non-symmetric) wavelet was chosen for DWT and WPT and after thresholding, wavelet 
coeffi cients were compressed by a LZW algorithm. The quality of compression was measured 
by PRD (Percentage Root mean square Difference). For the case of WPT+LZW compression a 
11.7-times transmission speedup over a simulated PSTN (Public Switched Telephone Line) was 
obtained (as  compared to the original record).

In [16] the MDL (Minimum Description Length) criterion was used for selection of the best 
wavelet fi lter and the threshold value for wavelet coeffi cients. DWT or WPT decomposition for 
22 different wavelet fi lters was considered (ten Daubechies fi lters, fi ve Coifl ets and seven Symlets 
fi lters) with fi xed four decomposition levels. The results from wavelet-based compression were 
combined with lossless coding (Huffman, LZW and LZH). An experimental study has been 
carried out for six recordings of a single-phase to ground fault event. The length of each signal 
was N = 8000 samples for 800 ms. One should notice that test signals (shown in Fig. 3 [16]) 
contain zeros for more then a half of their duration which may provide overoptimistic results. 
After numerical brute-force experiments the authors selected the Symlets7 fi lters as the best 
although they noticed that a wavelet fi lter, which is optimal for a given signal, is not necessarily 
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the best for another type of signal. Using the MDL the number of wavelet coeffi cients to be 
stored was computed. Positions of the coeffi cients were also stored. The quality of compression 
was measured by the percentage of MSE (Mean Square Error). Finally it was concluded that the 
DWT and WPT compression signifi cantly reduce the original fi le size of each signal to less than 
11% with the MSE about 1%. Additional lossless coding may further reduce fi le size by more 
than half of that value.

In [17] two-scale SLT (slantlet transform), which is an orthogonal DWT, was used for 
compression of power quality events. Computational complexity of the SLT is of the same 
order as that of the DWT. The compression algorithm relied on a judiciously fi xed threshold 
level and setting all insignifi cant coeffi cients to zero. Compression quality was measured by 
MSE in decibels. Test signals were generated using the MATLAB code at a sampling rate of 
3 kHz, amplitude resolution was not considered. Visual inspection of signals before and after 
compression for CR = 10 gives the impression of rather signifi cant quality deterioration (compare 
Fig. 4 and Fig. 5 or Fig. 8 in [17]) and more reliable results were obtained for CR = 5 (Fig. 1 
[17]). Best results were obtained for simulated voltage fl icker CR = 10 and MSE = -19.78 dB. 
Results for SLT were compared with DWT with unknown confi guration (i.e. the wavelet and the 
number of decomposition levels was not specifi ed) and a method called by the authors ‘standard 
DCT’, without specifying any implementation details (e.g. it is known from the JPEG standard 
[6] that quantization of DCT coeffi cients should be frequency-dependent which for images is 
achieved by zig-zag ordering and DCT should be computed in blocks for images of 8x8 pixels or 
64 samples, additionally the DC component is coded separately from AC components).

The above citations [14-17] are a demonstration of ideas rather than thorough studies of 
properties of the methods. All methods work well for selected test signals but their effectivness 
was not checked for a broad range of fi eld signals.

The paper presents a compression algorithm for electric power signals that enables very 
effi cient usage of available storage memory or communication channel bandwidth. It is shown 
that while preserving good quality compression ratios from 20 in case of highly distorted 
waveforms to 340 for undistorted sinusoidal waves can be achieved. That means that continuous 
monitoring can be extended 20 times (e.g. from about 1 day to about 1 month) in the worst case. 
The presented results were evaluated with signals recorded in the fi eld with different sampling 
frequencies and possessing different disturbances and those selected by IEEE experts [4].

The main contribution of the paper is a broad analysis of how wavelet decomposition 
parameters (i.e. different confi gurations of the number of decomposition levels and kind 
of wavelet fi lters) infl uence compression effi ciency. Additionally, numerical experiments 
were conducted with a representative data set of 12 fi eld power signals containing different 
disturbances and acquired with different sampling frequencies. The presented results were 
obtained by using a brute force method, checking every possible confi guration for the selected 
range of parameters. Such an approach was possible thanks to signifi cant computational power 
of today’s PC (Personal Computers) (computations took 5 days in the MATLAB environment 
with software not optimized for speed).

The originality of the presented work lies in applying Lifting Wavelet Transform (LWT) for 
signal decorrelation in the compression algorithm. Additionally the infl uence on compression 
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ratio and compression quality of the sampling frequency, length of data frame, type of wavelet 
function, number of wavelet decomposition stages and quantization level was investigated for a 
representative set of electric power signals.

2. COMPRESSION ALGORITHM

Compression algorithms [5, 6] can be divided into one of two major categories: lossless 
(like ZIP or ARJ) and lossy (like JPEG or MPEG). While the previous group ensures that the 
signal after encoding and decoding is exactly the same; the former allows some degradation of 
the signal after encoding and decoding, which most often is measured by MSE, PRD, PNSR 
(Peak Noise Signal Ratio) or other e.g. subjective test. The advantage of lossy compression 
algorithms lies in signifi cantly higher compression ratios.

The block diagram of proposed compression algorithm is presented in Fig. 1. The input 
signal x[n] is decomposed with integer LWT [19], next the wavelet coeffi cients are rescaled by 
Q (0 < Q ≤ 1) and rounded. Finally the bitstream is formed by an entropy encoder (Huffman, 
arithmetic or other). The decoding stage works just in the opposite direction as shown in Fig. 1b. 
For special case when Q =1 compression algorithm is lossless i.e. x[n] = xr[n], otherwise xr[n] 
slightly differs from x[n]. Compared to [14-17] hard thresholding is replaced by quantization, 
which can be viewed as a kind of soft thresholding. Quantization is easier in implementation 
and can be computed effi ciently, especially in the case when Q possesses values in the form 
of powers of 2. Another feature of the proposed method is lossless compression for Q = 1. For 
integer LWT reconstruction the error is equal 0, which is particularly important for biomedical 
data [11-13] as law regulation does not allow lossless compression.

Data fl ow in the compression algorithm is organized in frames made of a chosen number of 
x[n] input samples (e.g. 512) while the output works in an asynchronous manner and the bitstream 
can be stored or sent when the output buffer is fi lled. The proposed compression algorithm is 
designed for on-line application.

Fig. 1. Compression algorithm a) encoding, b) decoding, denotations: x[n] – input signal, xr[n] – reconstructed 
signal, LWT – integer Lifting Wavelet Transform, ILWT – Inverse integer Lifting Wavelet Transform, 

EE – Entropy Encoder, ED – Entropy Decoder, Q – quantization 0 < Q ≤1.
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2.1. Integer Lifting Wavelet Transform

LWT is the way of computing DWT coeffi cients. It was shown in [18] that every DWT 
fi lterbank can be factored into lifting steps. The lifting-based DWT has many advantages over 
the fi lterbank approach. Some of them are as follows (according to [6]): 1) Computational 
effi ciency: usually the lifting-based DWT requires less computation (up to 50%) compared to 
the fi lterbank approach. 2) Memory savings: during the lifting implementation, no extra memory 
buffer is required because of the in-place computation feature of lifting. This is particularly 
suitable for hardware implementation with limited available on-chip memory. 3) Integer-to-
integer transform [19]: the lifting-based approach offers integer-to-integer transformation 
suitable for lossless compression. 4) No boundary extension: In the lossless transformation 
mode, boundary extension of the input data can be avoided because the original input can be 
exactly reconstructed by integer-to-integer lifting transformation. The boundary problem can 
also be solved by using second generation wavelets [20] which is the approach applied in the 
proposed method, 5) Parallel processing.

Lifting computations can be also extended to adaptive computations [12, 21] or for integer 
to integer (i.e. lossless) FFT (Fast Fourier Transform) or DCT (Discrete Cosine Transform) 
implementation [22].

A computation diagram of integer LWT is depicted in Fig. 2 [19]. The input signal 
x[n] is split into samples with even and odd indices. The error of prediction of odd index 
samples from even ones forms detail coeffi cients d and updating even index samples with 
detail coeffi cients results in approximation coeffi cients a. Thus the signal x of length N is 
decomposed into low-pass approximation a and high-pass details d, both of the length N/2. 
For integer valued input signal x wavelet coeffi cients a i d are also integers. The computations 
are made in-place with no need for additional memory. The decomposition can be iterated 
on the approximation signal according to the Mallat algorithm or on approximation and 
detail signals according to WPT. The P and U are called predict and update fi lters. The most 
popular P fi lters are: P = [1], P = [1/2, 1/2], P = [-1/16, 9/16, 9/16, -1/16] and P = [3/256,

Fig. 2. Integer LWT computations: x[n] – input signal – length N, a – approximation coeffi cients length – N/2, 
d – detail coeffi cients length – N/2.
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-25/256, 150/256, 150/256, -25/256, 3/256]. U coeffi cients can always be computed as U = P/2. 
In implementation fi lters P and U do not have to be of the same length (one can choose any 
combination e.g. P = [1/2, 1/2], U = P/2 = [1/2] and not necessarily U = P/2 = [1/2, 1/2]). For 
P = [1/2 1/2] and U = [1/4 1/4] LWT is equivalent to the Le Gall (5,3) spline fi lter which was 
chosen for lossless coding in JPEG2000 standard [6]. The second LWT from the JPEG2000 
standard is the (9, 7) fi lter [6]. (9,7) LWT is not considered in the proposed implementation as it 
requires 4 lifting stages and scaling. For the sake of simplicity the proposed algorithm exploits 
only two lifting stages without scaling (see Fig. 2). The resulting wavelets belong to a biortogonal 
family and are symmetric. The input signal is decomposed with the Mallat algorithm.

Frequency interpretation of 2 level Mallat decomposition is illustrated in Fig. 3. Every 
decomposition level divides the spectrum of the input signal to low-pass and high-pass subbands. 
In compression algorithms only detail coeffi cients are quantized (or thresholded). From Fig. 3 
two main conclusions can be drawn: 1) the value of sampling frequency fs determines the division 
of the signal spectrum (e.g. for fs = 150 Hz after second level decomposition 50 Hz is present in 
detail coeffi cients, but for fs = 250 Hz after the second level 50 Hz is present in approximation 
coeffi cients); 2) compression of signals with reach spectrum will result in a low compression 
ratio for given quality, as detail coeffi cients posses information and cannot be signifi cantly 
quantized.

2.2 Measurement of compression performance

As depicted in Fig. 1, after LWT wavelet coeffi cients are rescaled by Q. For effi cient 
implementation Q in the form MmQ m  ,...,1,2/1 ==  was chosen and integer valued wavelet 

Fig. 3. Frequency interpretation of Mallat decomposition. Spectra of discrete signals are shown in the range from 
0 to fs/2 Hz. Denotations consistent with Fig. 2, fs – sampling frequency: a) fi rst decomposition level, b) second 

decomposition level.
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coeffi cients are rescaled by bit shifting instead of multiplication and rounding. This procedure 
causes some loss of information during compression and is the reason of quality loss of the 
reconstructed signal xr. For evaluation of compression quality PRD was used [10]:

  
(1)

where: x[n] – original signal, xr[n] – reconstructed signal (see Fig. 1). For comparisons with 
other works (e.g. [14-17]) one can notice that the following relation holds NMSEPRD =  and 
                                            

The defi nition of entropy in information theory was introduced by Shannon. For a discrete 
memoryless source entropy E is defi ned by equation:

 ,                                                       (2)

where: },...,{ 1 npp is the set of probabilities of occurrence of all symbols from the source alphabet. 
Entropy gives the smallest number of bits needed, on average, to represent one symbol. Any 
algorithm that is able to code source symbols with close to E bits for one symbol is considered as 
an entropy encoder. The most popular entropy encoders are Huffman and arithmetic. A detailed 
description of popular entropy encoders can be found in many available textbooks e.g. [5, 6].

The compression ratio CR is defi ned as original fi le size divided by compressed fi le size. 
The original fi le size was evaluated as 16N, were 16 stands for the number of bits for one sample 
of the input signal x (i.e. AD converter resolution) and N is the length of the input signal frame. 
Compressed fi le size was estimated as EN, where E determines the average number of bits for 
one wavelet coeffi cient. The compression ratios presented in the next paragraph were computed 
as:

  
.                                                         (3)

Defi nition (3) does not require implementation of an entropy encoder and thus numerical 
experiments are simplifi ed and speeded up. It is known from data compression literature [5], 
[6] that CR computed from (3) can be closely approached by popular entropy encoders or even 
exceeded by the cost of consuming more computational power when context coding (i.e. source 
memory) is applied.

3. RESULTS

Compression results strongly depend on the content of the data. The more information 
the signal contains the lower the compression ratio. The information is always the measure of 
uncertainty (2). On the other hand, the signal that can be exactly described analytically contains 
no information. This observation leads to conclusion that for the ideal case if voltages and currents 
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in power system were all pure sinusoids the compression ratio would go to infi nity, as arbitrary 
long time recording could be represented by a mathematical formula. In a real world power 
system, voltages and especially currents are practically always distorted from a pure sinusoid 
thus they have a stochastic nature (even samples of pure 50 Hz sinusoid when subtracted from 
analytic expression Asin(2π 50t) will not result with zeros because of many reasons one of them 
being quantization noise). The typical most common distortions in power systems are: fl icker, 
transients, harmonics, dips and interruptions and other [3].

3.1 Test signals

To avoid overoptimistic results the set of energetic test signals with different disturbances 
as shown in Fig. 4 was prepared. All test signals are real world fi eld recordings. The last two 
rows in Fig. 4 show recordings taken from the IEEE database [4] (fi les wave1, wave14a, wave3a, 
wave4, wave5, wave8). Additionally the test signals were taken at different sampling frequencies 
what can be seen from the number of samples on the OX axis. Amplitude resolution in all cases 
is 16 bits.

Fig. 4. The set of test signals, the OX axis shows the sample number.
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3.2 Numerical experiments

The goal of the numerical experiments was to verify compression performance of the 
proposed algorithm from Fig. 1 for different possible LWT and Q confi gurations for selected 
test signals.

The proposed compression algorithm has the following parameters, the considered values 
are given in brackets: input data frame length (512, 1024, 2048 and 4096 samples except signals 
from [4] where only 1536 samples were available), number of lifting decomposition stages (3, 4, 
5 or 6), length of P and U fi lters (all 16 combinations for fi lters given in section 2.1 e.g. P = [1] 
and U = [1/2], P = [1] and U = [1/4, 1/4] etc.), scaling Q (29 values from 1/8192 to 1). For 
the above settings 12(signals) × 4(frame length) × 4(decomposition stage) × 16(lifting fi lters) 
× 29(quantization levels) = 89088 simulations were run from which 12 × 4 × 4 × 16 = 3072 
compression curves each containing 29 points of different PRD (quality) versus CR (effi ciency) 
dependencies are drawn in Fig. 5a. As seen from Fig. 5a the range of compression ratios for a 
reasonably small reconstruction error PRD < 1% reaches values above 300. The results obtained 
by the above brute force testing method are very reliable and easy for interpretation. By carefully 
study of compression curves from Fig. 5a the best confi guration of the compression algorithm 
can be selected for the given class of test signals.

a)         b)

Fig. 5. a) Compression results for all confi gurations in brute force testing method (3072 curves), b) Best 
compression results selected for signal F (see Fig. 4) in the legend the length of the frame N, length of P and U 

fi lters and the number of lifting decomposition stages LS are given.

The highest compression ratios were obtained for signal F and are depicted in Fig. 5b. 
Signal F was produced in the laboratory by an Agilent generator as a pure sinusoid with added 
transient distortion and recorded with a sampling frequency of 100 kHz after a low-pass circuit 
[23]. This is an almost ideal case of a signal without any harmonic distortion. The exact results 
of reconstruction errors for signal F are depicted in Fig. 6. As seen from Fig. 6a CR reaches 
the value of 341.33 for the part of the signal without distortions. The CR for the second frame 
of signal F with a transient event around sample number 900 is signifi cantly lower and equals 
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54.17. Figures 6c, d depict results for signal F with length of the frame N equal to 2049 and 4096 
samples. A conclusion can be drawn that it is advantageous to use a shorter frame length when 
compressing waves with transient distortions, as CR for frames with transients is lower and 
transients possess short duration times. The short length of the frame is also benefi cial from the 
implementation point of view as it requires less hardware. Figure 7 depicts compression results 
for signal E. Signal E was generated in the same confi guration as F but recorded after a high-pass 
circuit thus showing a signifi cant amount of noise which occupies the whole spectrum. It can be 
seen from Fig. 7 that the reconstruction error is evenly distributed along the time axis. The zoom 
on the original and reconstructed signal in Fig. 7b shows that after lossy compression the signal 
was smoothed (denoised). The analysis of signals E and F illustrates additional functionalities 
of the proposed compression algorithm which are event (transient) detection (Fig. 6c, d) and 
signal smoothing (Fig. 7b). Both features are the results of applying wavelet transform in the 
compression algorithm.

a)       b)

 c)      d)

Fig. 6. Best compression results obtained for test signal F from Fig. 4, P = [-1/16, 9/16, 9/16, -1/16], U = [1/2], 
a) N = 512 fi rst frame, b) N = 512 second frame, c) N = 2048, d) N = 4096. The compression results are given in 
lower subplot titles. In all cases signals x and xr (upper subplots) and their difference (lower subplots) are shown.
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The spectrum of signal F consists practically of 50 Hz frequency only. Thus during 
compression detail wavelet coeffi cients equal to zero (no information) and can be effi ciently 
entropy encoded. The spectrum of signal E consists of 50 Hz frequency and wide-band noise, 
thus during compression detail wavelet coeffi cients are not equal to zero but posses some small 
values (some information) that cannot be entropy encoded as effi ciently as in case of signal F 
and resultant CR is lower.

A high CR was also obtained for signal B. It was a voltage signal with slight harmonic 
distortion recorded with a sampling frequency of fs = 12796 Hz. Harmonic distortion lasts during 
the whole recording time, thus as seen from Fig. 8a the reconstruction error is evenly distributed 
along the time axis.

Compression results for the rest of the test signals were comparable. Figure 8b shows 
average compression curves for different confi gurations. The averages were computed for 
test signals except the discussed above signals B, E and F. It is seen from Fig. 8b that for 
highly distorted waveforms (compare Fig. 4) one can expect CR in the range of 20 with PRD 
< 2%.

a)      b)
   

Fig. 7. Compression results for signal E: a) original signal x, reconstructed signal xr and the difference between 
these signals, b) detailed view of the transient disturbance in original x and reconstructed xr signals.

Figure 9 presents compression results for highly distorted sinusoidal signal wave4 for two 
quantization levels. Compression ratios 19.79 and 31.43 were obtained with PRD 1.98 % and 4.75 
% respectively. Subjective inspection of differences between original and reconstructed signals 
in Fig. 9 gives the impression of high compression quality even in the case of PRD = 4.75%.
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a)      b)
  

Fig. 8. a) Compression results for signal B. b) Averaged compression results for test signals (Fig. 4) except signals 
B, E and F.

a)      b)
  

Fig. 9. Compression results for signal wave4; original signal x, reconstructed signal xr and the difference between 
these signals is shown for: a) CR = 19.79, PRD = 1.98% and b) CR = 31.43, PRD = 4.75%.

4. CONCLUSIONS

Lifting based wavelet compression method for electric power system signals is proposed in 
the paper. Preliminary compression results in the form of plots showing the quality measured by 
PRD versus compression ratios are presented for a broad range of fi eld recorded power system 
signals (some of them selected be IEEE experts). It was verifi ed that for sinusoidal signals with 
slight distortion, a high compression ratio in the range of few hundred can be obtained while 
preserving high quality of lossy compression. For highly distorted sinusoidal waves, the worst 
case example, a compression ratio in the range of 20 was obtained with PRD not exceeding 2%, 
but such distortions are rare and if they appear only in a few frames of the signal they will be 



82 KRZYSZTOF DUDA

compressed with a lower ratio. Still the lowest compression ratios obtained are at least 2 times 
higher then those reported in [14–17].

Lifting wavelet transform that is used for data decorrelation can be additionally used for 
transient detection and signal smoothing (denoising). Thus the compression algorithm can be 
extended for signal analysis and enhancement, although for high vales of PRD signal of interest 
(i.e. disturbance) can be partially or even fully removed or changed, which is main drawback 
of all lossy compression algorithms. It is also possible for progressive quality based coding by 
employing the EZW algorithm [5, 6, 10, 13].

The advantages of LWT were highlighted in section 2.1. Implementation of LWT can be 
very effi cient in integer arithmetic. Lifting scheme allows in-place computations (without the 
need of additional memory) and the coeffi cients of lifting fi lters are based on powers of two, thus 
multiplication can be done by bit shifts. It was shown that in most cases good results are obtained 
with the frame length equal to 512 samples with 4 or 6 (for a high sampling frequency) wavelet 
decomposition levels and short lifting fi lters of order 1 or 2.

Implementation of the entropy encoder depends of available computational power. Huffman 
coding is computationally cheap but requires a code table. The table can be designed as near 
optimal for a chosen class of signals, it can be updated during encoding or dynamic Huffman 
coding can be used. For coding of detail wavelet coeffi cients, zero counting algorithms can also 
be used, as most of them, especially after scaling have a value of zero. Compression ratios were 
evaluated on the base of Shannon entropy. One can expect higher compression ratios than those 
reported in the paper in case of implementation of additional encoding algorithms like context 
coding in the entropy encoder.

The paper proposes the compression method rather than a specifi c implementation, but the 
obtained general results guarantee good compression performance in systems for storing and 
transmitting power system signals. The proposed compression algorithm will be incorporated in 
a currently developed system for monitoring power signals based on a PC computer and DAQ 
(Data AcQuisition) board.

Straightforward reference to compression algorithms of power signals presented in 
literature is diffi cult for several reasons. The main obstacle is the lack of a widely accepted 
database of electric power system signals that could be used as a reference for testing the 
quality of proposed compression solutions. In most papers devoted to compression of power 
signals the authors choose different test signals containing various phenomena acquired 
with different sampling frequencies and resolutions or even ideal test signals artifi cially 
generated in MATLAB and thus their work can not be fairly confronted with others. In this 
paper the part of testing signals was purposely selected from the publicly accessible IEEE 
database to overcome the above-mentioned diffi culties in comparing different compression 
methods.
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