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UTILIZATION OF LEVENBERG-MARQUARDT’S METHOD FOR IDENTIFICATION 
OF THE ELECTRONIC CURRENT TRANSDUCER WITH A HALL EFFECT SENSOR

IN A FEEDBACK LOOP

The utilization of Levenberg-Marquardt’s method (LM) for the identifi cation of an unknown 
model parameters of the electronic current transducer with a Hall effect sensor in the negative 
feedback loop has been described. The saturation reasons of the electronic block in the transducer 
model have been also taken into consideration which made it possible to use the model in error 
analysis of the electronic transducer while deformed signals are being measured in the power 
electronics and automation.
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1. INTRODUCTION

Nowadays electronic current transducers with magnetic fl ux compensation are very often 
applied in power electronic industrial devices [13]. Reasons for the increased popularity of 
electronic current transducers are: their simplicity, construction tested in practice and low price 
for relatively high measurement accuracy (the typical error is below 1% for the measurement of 
direct currents and currents in the frequency range of a few kHz). Moreover, fast development of 
power electronic devices induces continuous demand for measurement devices with better and 
better metrological properties.

Electronic current transducers have also disadvantages such as: the occurrence of a small 
unbalanced current of the electronic circuit at zero input current, the necessity of the external 
supply source stabilized within ±5%, signifi cant accuracy deterioration beyond the acceptable 
operating temperature range (-40÷85°C) and the occurrence of serious errors beyond the 
electronic block frequency bandwidth [7, 8, 9].

Taking into account numerous applications of electronic current transducers in the power 
electronics [13, 14] and the fact that previous electronic transducer models [5, 10, 13] have 
appeared to be insuffi cient during simulation tests for distorted primary currents whose individual 
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harmonics lay within the passband of the electronic block, the authors have constructed its new 
model [11]. This new model enables to analyze metrological properties of electronic current 
transducers while all harmonics of the primary current lie within the operating passband of the 
electronic block.

Some parameters of a new electronic current transducer model are presented in the 
specifi cation of these electronic transducers, whereas the remaining parameters are defi ned a 
priori. To eliminate this inconvenience, the authors have suggested an identifi cation method for 
these unknown parameters. To realize the identifi cation process, the user will have to perform 
a series of measurements when a sinusoidal current is forced in the primary circuit. In each 
measurement the frequency of the primary current ought to belong to the bandwidth of the 
electronic block and its amplitude should not exceed the value of rated current given in the 
specifi cation of the electronic transducer.

2. MODEL OF AN ELECTRONIC CURRENT TRANSDUCER WITH A HALL EFFECT 
SENSOR IN THE NEGATIVE FEEDBACK LOOP

Only the most important information concerning the new mathematical model of the 
electronic current transducer will be presented here. More information can be found in works: 
[5, 9, 11, 13, 14].

Electronic current transducers are adapted to transform direct currents, alternating currents, 
distorted currents and impulse currents with galvanic separation between the primary circuit 
(power circuits) and the secondary circuit (measurement devices). Figure 1 presents a functional 
diagram of an electronic current transducer.

Fig. 1. A visual diagram of the electronic current transducer with a Hall effect sensor in the negative feedback 
loop.
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The principle of operation of electronic current transducers with a Hall effect sensor in the 
negative feedback loop consists in the measurement of the magnetic fl ux that is forced in the 
primary circuit (Fig. 1). The measurement of the primary current is realized without loading the 
primary circuit and power loss in this circuit.

The worked out mathematical model of an electronic current transducer is presented in 
Fig. 2.

Fig. 2. A block diagram of the electronic current transducer model [11].

The model in Fig. 2 is a combination of the current transformer model [4] with the electronic 
circuit model of the electronic transducer (the rectangle drawn with the dashed line in Fig. 2).

The block diagram (Fig. 2) includes a block            which represents magnetic core 
properties. The block is determined by the following equation:

 ,                                      (1)

where: i'
μ
 is the magnetizing current, ψ is the magnetic fl ux, B = ψ / SFez2  is the magnetic induction, 

g(B) = H  is the nonhysteric B-H curve, SFe is the core cross section, lFe, l0 are respectively 
average lengths of magnetic circuit and air-gap, z2 is the number of turns in secondary circuit, μ0 
is the permeability of vacuum.

Other parameters: R1, R2, L2 - representing respectively resistances and inductances of 
primary and secondary circuits, RFe, RM, L2r - determining respectively magnetic core losses, 
the value of the measurement resistor, the inductance associated with the dispersion fl ux φ2r, 
the parameter ψr = Brz2S0 combined with the residual induction Br and n = z1/z2 representing the 
transformer turns ratio. The electronic block was modeled by the following blocks: G, kH, Gw(s), 
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that adequately represent the transconductance of transistors T1 or T2, the constant of the Hall 
effect sensor and the fi rst order transfer function of the operational amplifi er defi ned as: 

 ,                                                         (2)

where: Av0 - is the DC amplifi cation coeffi cient, ωg is the 3dB-cutoff angular frequency of the 
amplitude characteristic of the amplifi er.

The Hall effect sensor is placed in the air-gap of the magnetic core and it produces a Hall 
voltage - uH that is proportional to the magnetic induction B that appears in the magnetic core 
(Fig. 1). The Hall voltage feeds the operational amplifi er that controls the output voltage – uw. 
Afterwards the output voltage of the amplifi er drives complementarily connected transistors that 
altogether form the output power stage. Depending on the sign of voltage uw only one transistor 
T1 or T2 is conducting and in the secondary circuit a compensating current – i2e is forced (Fig. 2). 
The fl ow of current i2e produces an additional magnetic fl ux ψe associated with the secondary 
winding. The ψe fl ux compensates the main fl ux that is equal to ψt = z2(φ2 - φ1), which is generated 
in the current transformer. Due to the compensation of the magnetic fl ux in the magnetic core, the 
primary and secondary fl ows are equal each to other:

 .                                                              (3)

In reality, primary and secondary fl ows in Eq. (3) are only approximately equal because 
of the control error. Furthermore, to work properly, current transformers need a small residual 
fl ux in the magnetic core. The voltage drop that appears on the measurement resistor RM is the 
response signal of the electronic current transducer to the primary current i1, can be calculated 
from the relation:

 
.                                                           (4)

Some parameters of the electronic current transducer: z1, z2, R1, R2, RM can be easily found in 
its specifi cation. The remaining parameters of the model i.e. SFe, lFe, l0, kH, Av0, ωg, L2, L2r, RFe, Br, 
G are unknown to the user. Sometimes if construction of electronic transducer is not hermetically 
closed, parameters SFe, lFe, l0 can be easily determined.

The identifi cation method of nonlinear objects was used to estimate the values of unknown 
parameters. It is worth emphasizing that adjustment of all the unknown parameters at the same 
time is inadvisable as it could cause unsettling of the part of them which also results from Fig. 2. 
Therefore, it is strongly recommended to accept most of the unknown parameters as constants 
and in the identifi cation process only those unknown parameters that affect signifi cantly the 
value of the electronic current transducer output signal – i2 should be determined.
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3. SELECTED METHODS OF IDENTIFICATION OF PARAMETERS OF GENERALLY 
NON-LINEAR MODELS

At present there are numerous well-known identifi cation methods of parameters of non-
linear object models. A thorough description of these methods can be found in the following 
works [1, 3, 6, 12]. Choosing the method, the authors have taken into consideration not only its 
usefulness in the parameter identifi cation of the electronic current transducer model, but also 
possibilities of its implementation in C++ language as well as its effectiveness. Therefore, the 
lead time of the procedure of fi nding the parameters of the best fi t played the essential role 
here.

A common part for all methods of the model parameters identifi cation is to defi ne the so-
called fi gure-of-merit function which measures the agreement between the responses of the real 
object and a model Φ(u, a), obtained for the same test-signal. The merit function is small when 
the agreement between the examined object and its mathematical model is good. Then parameters 
of the model are changed to minimalize the merit function. For measurement points (ui, yi) with 
standard deviation σi, i = 1, 2, …, N and the mathematical model Φ(u, a), the exemplary fi gure-
of-merit function is defi ned as:

 
.                                                    (5)

The Eq. (5) will be realized only when the errors of subsequent measurements of the 
response of a real object yi have a normal distribution and are linearly independent. Otherwise 
Eq. (5) has an approximate character.

It often happens that a merit function has not one, but many local minima. Of course in the 
process of identifi cation it is essential to fi nd the global minimum, which causes many diffi culties, 
when procedures of searching for best fi t parameters encounter local minima.

Moreover, in the process of best fi t parameter fi nding, it is important to take into consideration 
the fact that the data obtained during laboratory measurement contain random errors [2]. For that 
reason the constructed model, even if it were most precise and correct, would never ideally 
imitate the measurement data.

The fi tting procedure should provide:
 parameters of best fi t,1.
 estimation errors of the found parameters,2.
 a statistical measure of goodness of fi t.3.

If the following requirements concerning the implementation of the algorithm were added 
to the above problems, i.e.:

 optimization of the program code (assures quick adjustment of the model),1.
 correctness with respect to numerical methods (roundoff errors, cutoff errors etc.), the process 2.

of fi nding best fi t parameters would become really complicated. Taking that into account, the 
authors used an already existing procedure of parameter identifi cation [12], modifying its source 
code and introducing several innovative changes to the algorithm of the procedure.
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In identifi cation methods discussed in next subsections the gradient and the Hessian matrix 
of the merit function are used, therefore their mathematical defi nitions have been presented.

The gradient of the merit function in relation to parameters a is defi ned as follows:

 
,                                  (6)

 

where: k = 1, 2, 3, …, M. The gradient has a zero-value when the merit function reaches a 
minimum.

Counting partial derivatives after parameters a for the merit function (on condition that the 
merit function is twice differentiable) the Hessian matrix is obtained, the subsequent values of 
which are given as:

 
,          (7)

where: k = 1, 2, 3, …, M, l = 1, 2, 3, …, M.
In the next subsections the selected methods of parameter identifi cation have been briefl y 

described. The order of the presentation of these methods is not accidental, because Newton’s 
method and the steepest descent method determine the foundation for the Levenberg-Marquardt’s 
method that is the object of interest in this article.

3.1. Newton’s method

Newton’s method belongs to methods of local convergence. The following conditions must 
be accomplished to achieve a locally convergent method:

 the merit function is twice differentiable and in the neighborhood of the solution, given as, 1. a* 
for a certain constant γ the estimation takes place ||∇2F(aʹ) - ∇2F(aʹʹ)|| ≤ γ ||aʹ- aʹʹ||, where: aʹ and 
aʹʹ are two different vectors of parameters,

 2. ∇F(a*) = 0,
 3. ∇2F(a*) is positively defi ned.

If the above mentioned conditions are realized then the function F(a) could be approximated 
by function ( )aF~  which is described by a quadratic form:

 
,                            (8)

where: â is the vector of parameters in the current iteration, a is the vector of parameters in the 
new iteration, T determines the  transposition operation and ∇2F(â) is the Hessian matrix of the 
merit function. The Eq. (8) was introduced by developing the function F(a) into a Taylor series 
and by rejecting the rest of the Taylor formula.
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If ∇2F(â) is positively defi ned, then the minimum of the function ( )aF~  is determined by 
comparing the gradient of the function to zero, which can be written as:

 .                                          (9)

After simple operations the vector of parameters is obtained in the new iteration:

 .                                                 (10)

If conditions (1–3) are met and the starting point a0 is found close enough to the solution a*, 
then subsequently counted parameters an will approach to a*, which can be presented as:

 ,                                          (11)

In practice the inverse matrix to the Hessian matrix is not counted, but the set of equations 
is solved in relation to δa:

 .                                                (12)

Then, new parameters are obtained as follows:

 .                                                          (13)

Newton’s method is characterized by the local convergence, which means that if the vector 
of starting parameters is far from the searched solution a* then Newton’s algorithm will be 
unstable and will not lead to the desirable solution. In practice at the beginning of the merit 
function minimum search, the method of global convergence is used. The method is described 
in the next subsection.

3.2. The steepest descent method

Here the chosen method of global convergence - the steepest descent method is discussed. 
In the method the values of new parameters are obtained from the equation:

 .                                                   (14)

However, as opposed to Newton’s method, the new set of parameters an is not always close 
to the optimum solution a*.

Different ways of coeffi cient λ selection are applied to accelerate the calculation of the 
method. The basic strategy of determining parameter λ is the following: when in the next step 
of the algorithm the value of the merit function F(a) decreases, the coeffi cient λ is slightly 
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increased, whereas when the value of the merit function increases signifi cantly in relation to the 
previous step of the algorithm (probably the solution grows distant from the global minimum 
of the function F(a)), the value of the coeffi cient λ is decreased. It should be emphasized here 
that the ways of coeffi cient λ selection are most often arbitrary. In spite of different ways of 
coeffi cient λ selection described in [6], more or less effective, the steepest descent method works 
slowly (the quantity of iterations which ought to be performed to reach the optimum solution, 
is large).

In the next subsection still another method will be discussed which has the features of 
Newton’s method and of the steepest descent method, hence it becomes an attractive tool to solve 
non-linear problems.

3.3. The Levenberg-Marquardt’s method (LM)

The authors examine the model parameters estimation method worked out by Levenberg 
and Marquardt.

For the merit function given with the Eq. (5), the vector of parameters a determined in n-th 
iteration of the LM method defi nes the equation [6, 3]:

 ,                                            (15)

where: 1 is the singular matrix of the dimension M, H is the Hessian matrix of the merit function, 
also of the dimension M.

If λ parameter approaches zero, the way of determining the successive approximations of 
the vector of parameters a will be close to Newton’s method. However, the increase of parameter 
λ causes an increase of importance of the direction of improvement which is determined on the 
basis of the gradient of the merit function F(a). The λ parameter is not only used as „a switch” 
between two strategies of searching for the optimum solution i.e. with Newton’s method and 
the steepest descent method, but it also affects the step size performed towards the minimum of 
the function F(a). It turns out that the greater the λ coeffi cient, the smaller the value of the step. 
These features of the LM method are very useful, because at the beginning, when the considered 
parameters are distant from the optimum solution, then the performed steps are smaller and the 
steepest descent method is used. Newton’s method is used only when the algorithm is close to 
the solution, which assures greater stability of the LM method.

The set of linear equations is solved in n-th step of the LM method in the form [12]:

 
,                                                          (16)

where: 
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and

 
                                                         (17)

 
.                                                         (18)

The LM method steps are performed as follows:
 Assume a priori the set of trial parametersa)  a0,
 Calculate the value of the merit function for trial parameters b) F(a0),
 Accept a small value of the parameterc)  λ, for example λ = 0,001,
 Solve the linear set of Eq. (16) in relation to d) δa and then calculate the value of the function 

F(a + δa),
 If e) F(a + δa) ≥ F(a) is true, then increase the parameter λ 10-times (another scaling coeffi cient 

can also be used) and return to step d),
 If f) F(a + δa) < F(a) is true, then decrease the parameter λ 10-times, then update the vector of 

parameters according to the equation a = a + δa and go to step d).
Large demand for the memory which is proportional to the square of the number of adjusted 

parameters a is a disadvantage of the LM algorithm. Therefore, the application of this algorithm 
in models with a big number of parameters is inadvisable.

The model considered in this paper has a small number of parameters, that is why, in the view 
of numerous advantages of the method i.e. stability and the comparatively quick convergence, 
the authors have decided to choose the LM method for the identifi cation of the parameters of the 
electronic current transducer model.

4. RESULTS OF PARAMETER IDENTIFICATION OF THE ELECTRONIC CURRENT 
TRANSDUCER

Using procedures described in work [12] and introducing own modifi cations during the 
implementation of the described LM method, the authors of the report have created the application 
for calculating parameters of the electronic current transducer model.

As the mathematical model is given in the form of ordinary differential equations [11] of the 
fi rst-order (the model is not given transparently in the form of a function Φ(u, a)), therefore the 
authors had to modify the procedures of the program, among others for calculating the gradient. 
The problem „of the dead end”, when the algorithm originally written stopped in local minima, 
has also been solved.

Figure 3 presents a graphic window of the program that represents the beginning of the 
identifi cation process, when the parameters are still distant from their optimum values. The 
procedure of the identifi cation has been realized for a transducer of the type LA25-NP [13].

In the program are combined amplitude characteristics of the real object (dots) and 
mathematical model (solid line). Manufacturers assess the cutoff frequency based on amplitude 
characteristics for sinusoidal primary current [5, 8, 9].

Utilization of Levenberg-Marquardt’s method for identifi cation of the electronic current...
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Fig. 3. Bode characteristics of electronic current transducer obtained for the fi rst trial values of the parameters.

In the panel “Identifi cation” there is given “a teaching fi le”, which consists of a series of 
measurement results of the secondary current effective value of the electronic current transducer 
performed for several selected values of the frequency of the primary current of settled effective 
value. The information which parameters have to be adjusted, and which remain constant are 
found in the confi guration fi le read in from the panel “Load confi g” of the main program. 
Fragment of the exemplary confi guration fi le is listed below:

The confi guration fi le also contains: parameters of the differentiation method settings, the 
arrangement of the graph and parameters of the test-signal that is given at the entry of the model. 
Changes of the test signal are performed during simulation (the panel “Simulation”), when the parameter 
identifi cation has been completed. During identifi cation (the panel “Identifi cation”) the sinusoidal 
signal is used with the effective value equal to the rated value of the primary current read from the 
specifi cation of the examined transducer. Measurements for the teaching fi le were also performed for 
the same effective value of the primary current for a dozen or so frequencies of the values of the 
transformation bandwidth of the electronic transducer block. The results of the identifi cation along 
with the errors of the parameter estimations in each iteration are printed in the report fi le.

JAKUB PIWOWARCZYK, KRZYSZTOF PACHOLSKI



101Utilization of Levenberg-Marquardt’s method for identifi cation of the electronic current...

The description of other panels is the following: “Load data” - showing the measurements 
obtained during the simulation, “Cursors” - the use of cursors for precise determination of the 
value of the cutoff frequency, “Save” - recording of the image of the graphic window into a BMP 
fi le.

Fig. 4. Bode characteristics of electronic current transducer obtained for extracted values of the parameters.

The limiting error of the LA 25-NP transducer is 0,5 % of the measured current. Taking into 
account the limiting error value, characteristics have been drawn of the error of the secondary 
current effective value for the real transducer (the characteristics of limiting errors are marked 
with dashed lines in Fig. 3 and Fig. 4). The result of the simulation of the model with identifi ed 
parameters are marked with a solid line. Points represent measurements performed for the 
teaching fi le, on the basis of which the identifi cation has been performed. In Table 1 were 
presented values obtained from specifi cation: z1, z2, R1, R2, RM and values: lFe, l0, SFe measured 

Parameter Unit Value

z1 - 5

z2 - 1000

R1 0.00125

R2 110

RM 190

lFe m 0.053

l0 m 1e-3

SFe m
2

8.625e-6

Table 1.
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based on LA25-NP transducer. In Table 2 were presented values for which identifi cation process 
was performed. Values from Table 1 were set as constants in confi guration fi le and values in 
Table 2 as variables.

Table 2.

The fi nal result of the identifi cation which was realized in seven iterations is presented in 
Fig. 4 and Table 2. The result of the identifi cation is within the error limit of the measurement of 
the secondary current effective value of the transducer.

5. CONCLUSION

The method of parameter identifi cation of the electronic current transducer model has been 
discussed in this paper. The method appeared to be an effi cient tool for the determination of 
unknown parameters of the transducer model, because the answers of the model of parameters 
identifi ed with the LM method are within the error limit of the measurement with the electronic 
current transducer.

The new model with well identifi ed parameters can contribute to the recognition of the 
metrological proprieties of electronic transducers and to the qualifi cation of the usefulness of 
these transducers in processing of a deformed signal. Other advantages, which result from the 
application of the model are: the possibility of the use of the model during research in working 
conditions different from normal and choosing the electronic transducer which would be optimal 
in a given measurement system.
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