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APPLICATION OF MONTE CARLO SIMULATION FOR THE EVALUATION 
OF MEASUREMENTS UNCERTAINTY 

The Monte Carlo procedure for evaluation of uncertainty in measurements is considered. 
Algorithms of formation correlation and non correlation  data fi les of the input quantity estimated 
on types A and В are developed.
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1. INTRODUCTION

The common approach to uncertainty evaluation described in the “Guide to the Expression 
of Uncertainty in Measurement” GUM [1] has a series of limitations. First, the basis of that 
method consists of the law of uncertainty propagation that rested on fi rst-order Taylor series of 
nonlinear function of the model. Application of that approach lead to the biased estimator of the 
measurement result and to the unjustifi ed estimator of the combined standard uncertainty uc. 
Secondly, when one estimates the expanded uncertainty according to the Central Limit Theorem 
it assumes a normal distribution of the output value and the coverage factor approximated by 
the coverage factor of Student’s distribution with particular degrees of freedom obtained from 
the Welch-Satterthwaite formula. The fi rst assumption is justifi ed when the model function 
is linear, there is a big amount of input values and their laws of distribution are symmetrical. 
Besides, the expression of the coverage factor by way of the coverage factor of Student’s 
distribution is not always justifi ed. In this way the minimal value of the coverage factor of 
Student’s distribution for a level of confi dence 0.95 is 1.96 with infi nite degrees of freedom. 
However, in case of a single measurement or when the contributions of type В evaluation of 
uncertainty is dominant, the value 1.96 of the coverage factor is maximum. Then the minimum 
value of the coverage factor can be equal to 1.65 for rectangular law of the distribution and 
1.45 for arcsine law of the distribution. In those cases the estimation of the coverage factor 
according to the GUM gives a too high estimator of the expanded uncertainty correspondingly 
for 20% and 40% [2].
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Complication of applying the Welch-Satterthwaite formula exist even in the cases when 
there are no contributions of type В evaluation of uncertainty [3]. That formula was obtained 
by the approximate analytical methods in the thirties and forties of the previous century and 
its correctness was not checked by methods of computational modeling. Besides, the Welch-
Satterthwaite formula is fundamentally not designed to deal with correlated input values and in 
this case its application can lead to an unjustifi ed estimator of the expanded uncertainty [6].

Applying the calculus of approximations for evaluation of uncertainty of the measurement 
can eliminate all drawbacks like that described above.

Statistical modeling (Monte Carlo) based on the law of propagation of the distributions 
is the most universal. This method is the foundation of Supplement 1 to the GUM “Numerical 
methods of the propagation of distributions” developed by Working Group 1 (WG1) of the 
Joint Committee for Guides in Metrology headed by the director of the BIMP [7]. Note that the 
Supplement 1 (currently under development) does not consider the combined laws of Student’s 
distribution in case when there is type A evaluation of uncertainty and the observed correlation, 
and it also does not consider the combined laws of rectangular distribution in case when there is 
type B evaluation of uncertainty and logical correlation.

The present article has the statement of the evaluation of measurement uncertainty by Monte 
Carlo simulation, taking into consideration the observed and logical correlation.

2. MONTE CARLO SIMULATION AND ITS REALIZATION

In the Monte Carlo simulation the input values X1, X2, …, Xm represented as random values 
with densities of the probability distributions g1, g2, …, gm. Expectation and standard deviation 
of these probability distributions is assigned to be equal to the estimators of the input values and 
their standard deviations respectively.

In this application the Monte Carlo simulation encompasses the realization of the next 
operations (Fig. 1):
1. Generation of m arrays of the random numbers xj, j = 1, 2, …, m of the given size n(n = 105 
… 106), appropriate for the required laws of distribution.
2. Obtaining the array y of the output value estimator. The size of that array equal to n.
3. Counting the parameter estimators of the obtained distribution: expectation ( )yM̂ , combined 
standard uncertainty ( )yucˆ , coverage factor k and expanded uncertainty pÛ  for the given level 
of confi dence p.
4. Repeating l times (l = 50 … 10) the steps 1-3 to obtain the average values of parameter 
estimators from step 3 and counting the estimator of their standard deviation to obtain their 
reliability.

An advantage of the Monte Carlo simulation is the practical possibility of unlimited increase 
of accuracy by increasing the size n × l of the random numbers arrays.
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3. PRODUCING THE ARRAYS OF THE INPUT VALUES THAT ARE EVALUATED 
BY TYPE B

When one evaluates the uncertainty of type B one needs to obtain data arrays with normal, 
rectangular, triangular, arcsine and other distributions applied in that case. Generally, integrated 
generators of random numbers in mathematical and statistical software provide generation of 
numbers with normal and rectangular distributions. Other required laws of distribution could be 
obtained by the inverse function method.

For realization of the inverse function method one needs to generate random numbers 
that have the rectangular law of distribution in the interval [0; 1]. These numbers are reduced 
according to equation:

                                                                                ,        

where xji - the initial ith random number of jth input value that has the rectangular law of distribution; 
*
jix  – the unknown ith random number of jth input value that has the given law of distribution; 

G-1 – the inverse integral function of the given law of distribution.
For obtaining G-1 one needs to write the analytic equation for the integral function of 

distribution in the form of x = G(x*), then express from this the next equation: x = G-1(x*).
Thus, for obtaining the array of the random numbers that have the arcsine distribution 

with given expectation and standard deviation we realize inverse transformation of the integral 
function of the arcsine distribution:

                                                                                               ,

from which we obtain:

Application of Monte Carlo simulation for the evaluation of measurements uncertainty

Fig. 1. Realization of the Monte Carlo simulation.
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                                                                                                  .

We can obtain some laws of distribution by composition of random numbers that have the 
known law of the distribution. Thus, triangular distribution obtained by composition of two arrays 
of random numbers that have the rectangular distribution with equal standard deviation, trapezoidal 
distribution is the result of composition of two arrays of random numbers that have the rectangular 
distribution with different standard deviations σ1 and σ2. That standard deviation of the result 
distribution is defi ned according to the rules of the variance composition: 2

2

2

1
.

When one evaluates type B uncertainty there is the possibility of the existence of several 
mutually correlated input values. Correlation of these values (so-called logical correlation) is 
conditioned upon the use of the same measuring instrument, physical reference or the same 
reference data that have signifi cant uncertainty during the measurement.

In that case for realization of the Monte Carlo simulation, the generation of the combined 
(two-dimensional) law of distribution correlated input values is needed. That task has an easy 
solution for normal distributions [7]. However for other distributions that procedure does not 
succeed, but there is a critical need of it, because generally contributions of the uncertainties 
evaluated by type B have the law of distributions not normal (Fig. 2).

The developed method of modeling of the combined distribution of the two correlated 
values that have arbitrary laws of distribution includes the next steps:
1. Generation of two sequences of uncorrelated random values ξ1 and ξ2 that have normal 
distribution, their expectation equal to zero and their standard deviation equal to one.
2. Generation of the third sequence from those sequences 

2

2

2,112,13
1 rr .

3. Realization of the transformation of ξ1 and ξ3 in the form of an integral function of normalized 
normal distribution υ = FH(ξ) with obtaining of the sequences of the correlated random numbers 
υ1 and υ2 in the interval [0; 1] that have rectangular distributions and correlation coeffi cient r1, 2 
close to the initial coeffi cient r.
4. Obtaining normalized random numbers υ1H and υ2H with rectangular distributions, with 
expectations equal to zero and standard deviation equal to one is realized according to 
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2,12,1 H

.
5. Realization of the inverse function method for obtaining the two sequences of the 

correlated random values ψ1 and ψ2 that have the given laws of distribution ψ1, 2 = G-1(υ1, 2) where 
G – the integral function of the given law of distribution.

The proposed approach allows the realization of the generation of the mutually correlated 
random numbers that have a given correlation coeffi cient and any law of distribution, including 
different laws. The research has shown [8] that the methodical bias of reproduction of the 
correlation coeffi cient due to nonlinear transformation of initial laws of distribution in the case 
of simulation does not exceed -0.018 in the interval –1 ≤ r ≤ 1 when the laws of distribution are 
rectangular and it achieves a maximum at the point r ≈ ±0.6.

Realization of the inverse function method to obtain the correlated input values that have 
arcsine distribution increases the maximum mean value of the added bias of the correlation 
coeffi cient reproduction to -0.043. Taking into account the corresponding correction for the 
mean value of the correlation coeffi cient allows to compensate the mentioned bias.
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4. PRODUCING THE ARRAYS OF THE INPUT VALUES THAT ARE EVALUATED 
BY TYPE A

When one evaluates type A uncertainty one needs to obtain the data arrays that have 
Student’s distribution. The basis for its obtainment is the known equation for parameter T:

.                                                            (1)

To obtain the array of random numbers that have Student’s distribution with given degrees 
of freedom v one needs to perform the following operations:
1. Generation of the amount N = v + 1 of the random numbers xi, which have normal distribution 
and the following parameters: Mx = 0 and s(x) = 1.
2. Calculation of the average mean value x , the estimator of its standard deviation ( )xs  by 
known equation and calculation of the mean value of the fi rst realization of the parameter T by 
using Eq. (1).
3. Subsequent calculation of the data array of the realization of the parameter T of the given 
size n.

During evaluation of type A uncertainty we have to face the case when the input values 
are mutually correlated. In that case the cause of the (so-called) observed correlation is the 

Application of Monte Carlo simulation for the evaluation of measurements uncertainty

Fig. 2. Modeling method of the combined distribution of the two correlated values that have arbitrary laws of 
distribution.
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measurement of the two or more input values in the same conditions simultaneously. Mostly we 
can meet the mutual observed correlation in indirect multiple measurements.

For the realization of Monte Carlo simulation one needs the generation of combined (two-
dimensional) Student’s distribution of the correlated input values. That task has the following 
solution:
1. Generation of the two series of random numbers xi of the size N that have normal distribution 
with parameters M1 = 0, M2 = 0, standard deviation equal to one and with values mutually 
correlated with the correlation coeffi cient r1, 2.
2. Calculation of the average means 1x  and 2x , and estimators of their standard deviations 
( )1xs  and ( )2xs  of every series and calculation of the mean values of the fi rst realization of the 

parameters T1 and T2 according to Eq. (1).
3. Subsequent calculation of the arrays of realization of the parameters T1 and T2 of the given 
size n(n = 105 … 106).

5. OBTAINING THE MEAN VALUES OF THE EXPANDED UNCERTAINTY AND OF THE 
COVERAGE FACTOR BY USING THE STATISTICAL DATA OF THE INPUT VALUES

After producing the data arrays of all the input values X1, X2, …, Xm obtainment of the data 
array of the output value is realized according to the equation:

    .

After obtaining the data array of the output value one calculates:
– the measurement result estimator according to the equation:

                                  ,

– the standard combined uncertainty estimator of the measurement result:

                        .

The resulting data array of the output value needs to be sorted for estimation of the expanded 
uncertainty. Also we need to calculate the interquartile interval according to the equation: 

                  ,

where Yn(1+p)/2 and Yn(1-p)/2, are the n(1 + p)/2 and n(1 - p)/2 terms of the sorting data array of the 
output value respectively.

Thus, for p = 0.95 and n = 105 quartiles of the output value, distribution is estimated for the 
97500th and 2500th terms of the sorting array.

The coverage factor estimator is obtained by dividing the expanded uncertainty estimator 
by the standard combined uncertainty:
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                                                                                .

It is necessary to repeat the mentioned operations l times (l = 50 … 100) for specifi cation 
obtained uncertainty estimators and coverage factor and for evaluation of the standard deviation 
of these estimators.

6. AUTOMATION OF THE EVALUATING MEASUREMENT UNCERTAINTY

The authors have developed the software for evaluating measurement uncertainty which 
realized Monte Carlo simulation and which saves the operator from routine work and speeds up 
the process of evaluation [9].

7. CONCLUSIONS

It’s described Monte Carlo simulation for estimating measurement result and its uncertainty 
that have arbitrary model function. Application of this method allows eliminate the shortcomings 
of the uncertainty distribution law in the presence of the essential nonlinearity of the model 
function, correlation between input and output values that have non-normal law of distribution. 
The present approach allows generation correlated random numbers in pairs with given correlation 
factor and any distribution laws including not the same laws.

REFERENCES

1.  Guide to the Expression of Uncertainty in Measurement, ISO, Geneva, 1st Ed. 1995 – 101 p. Translation from 
English. S. Peterburg: VNIIM D. I. Mendeleeva, 1999 – 126 p. (in Russian)

2.  Zakharov I. P.: “Calculating coverage factor for rectangular and normal distributions of the uncertainty 
contributions”, System of information processing, 2005, no. 6, pp. 52–57. (in Russian)

3.  Zakharov I. P.: “Composition of Student’s laws of distributions”, System of information processing, 2005, 
no. 8, pp. 28–35. (in Russian)

4.  Welch B. L.: “The signifi cance of the differences between two means when the population variances are 
unequal”, Biometrika, 1938, no. 29, pp. 350–362.

5.  Satterthwaite F. E.: “An approximate distribution of estimates of variance components”, Biometrics Bulletin, 
1946, no. 2, pp. 110–114.

6.  Zakharov I. P.: “Calculation of correlation during estimation of multiple measurements”, System of information 
processing, 2005, no. 9, pp. 43–45. (in Russian)

7.  Kocks M., Harris P., Zibert B. R.-L.: “Measurement uncertainty estimation based on transformation of 
distributions by Monte Carlo simulation”, Measurement technique, 2003, no. 9, pp. 9–14. (in Russian)

8.  Zakharov I. P.: “Correlated data simulation during processing results of measurements”, Simulations and 
informational technologies, 2005, no. 33, pp. 35–40. (in Russian)

9.  Zakharov I. P., Vodotyka S. V.: “Software for measurements uncertainty evaluating”, System of information 
processing, 2007, no. 6, pp. 41–43. (in Russian)

Application of Monte Carlo simulation for the evaluation of measurements uncertainty

k̂ c
ˆ ˆU / u y


