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COMPARISON OF LS-TYPE METHODS FOR DETERMINATION OF OLIVE OIL
MIXTURES ON THE BASIS OF NIR SPECTRAL DATA

The spectrophotometric analysis of oil mixtures, containing olive oil, is the subject of this
paper. Its objective is to compare six least-squares-type estimators which are potentially applicable
for determination of a selected component of the mixture. The comparison presented is based on
the criteria related to measurement uncertainty.
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1. INTRODUCTION

The quality and purity of olive oil, extensively used in the food industry, is of
significant commercial importance. According to the EU regulations, in force since
2002, a manufacturer of products based on or containing olive oil, must either indicate
the share of olive oil in the total weight of the product or the percentage of olive oil
as percentage of the total fat. That is why increased interest in the methods for olive
oil analysis has been observed for the last five years. Near-infrared (NIR) spectropho-
tometry, when combined with sophisticated procedures for spectrophotometric data
processing, seems to be the most convenient and flexible tool for this application; con-
sult, for example, [1-5] for more details. The comparison of numerous existing methods
which are potentially suitable for this application, using both metrological and numer-
ical criteria, seems to be of particular importance under those circumstances. This
paper is devoted to the comparison of six least-squares-type methods most frequently
used for estimation of the concentration of a selected component of an oil mixture,
on the basis of the data representative of the NIR spectrum of this mixture, viz.: the
ordinary least-squares estimator (OLS), the generalized least-squares estimator (GLS),
the ridge least-squares estimator (RiLS), the robust least-squares estimator (RoLS),
the total least-squares estimator (TLS) and the partial least-squares estimator (PLS).

1 Received: October 20, 2008. Revised: November 21, 2008.
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In the authors’ conference paper [6], some preliminary results of their comparison
were reported. Here the results of a more advanced stage of the comparative study
are presented. The main improvements of the methodology of comparison consist in
a modification of the procedure for data synthesis, in the use of the data subject to both
correlated and uncorrelated measurement errors, and in more advanced optimization
of the estimators RiLS, RoLS, TLS and PLS.

The following general rules are consistently used for generation of the mathematical
symbols throughout this paper:
– x, y, ... are real-valued scalar variables;
– ẋ, ẏ, ... are exact values of the variables x, y, ...;
– x̂, ŷ, ... are estimated values of the variables x, y, ....

The diacritical signs, whose meaning has been explained above in reference to
scalar variables, are applied in an analogues way with respect to vectors (x, y, ...) and
matrices (X, Y, ...) of real-valued variables.

2. RESEARCH PROBLEM

It is assumed that an oil mixture to be analyzed is composed of J known compo-
nents, and that the exact data ṡ j |M×1 ( j = 1, ..., J < M), representative of the absorbance
spectra of all those components are available. According to Lambert-Beer’s law, the
exact absorbance data ṡ, representative of the spectrum of the mixture, satisfy the
equation:

ṡ =

J
∑

j=1

c jṡ j (1)

where c = [c1...cJ]
T is the vector of (normalized) concentrations of components, subject

to the following constraints:

J
∑

j=1

c j = 1 and c j ∈ [0, 1] for j = 1, ..., J (2)

It is assumed that the real-world absorbance data s̃, representative of the spectrum
of a mixture, are corrupted by errors ∆s̃ resulting both from inaccurate preparation of
the mixture and imperfections of the spectrophotometer:

s̃ = ṡ + ∆s̃ (3)

The research problem, studied in this paper, consists in estimation of the concen-
tration of only one component of the mixture, viz.c1, by means of a linear estimator
of the form:
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ĉ1 = pT s̃ (4)

where p =
[

p1...pM

]T is a vector of parameters to be determined on the basis of a set
of calibration data:

D̃
cal
=

{

s̃cal
n , ċ

cal
1,n

∣

∣

∣ n = 1, ...,N
}

(5)

which – for the sake of convenience of numerical manipulations – are organized in
a matrix and a vector:

S̃cal ≡
[

s̃cal
1 . . . s̃cal

N

]T
and ċcal ≡

[

ċcal
1,1 . . . ċcal

1,N

]T
(6)

The parameters to be determined are assumed to satisfy the following approximate
equality:

S̃cal · p � ċcal (7)

which is the basis for development of all the methods that may be used for their
estimation.

The performance of the six LS-type methods of estimation of the parameters p –
viz. of OLS, GLS, RiLS, RoLS, TLS and PLS estimators – is compared on the basis
of some criteria characterizing the uncertainty of the final result of analysis, defined
by Eq.(4), using a set of validation data:

D̃
val
=

{

s̃val
n , ċ

val
1,n

∣

∣

∣ n = 1, ...,N ′
}

(8)

which are organized in a matrix and a vector:

S̃val ≡
[

s̃val
1 . . . s̃val

N ′

]T
and ċval ≡

[

ċval
1,1 . . . ċval

1,N ′

]T
(9)

3. RESEARCH METHODOLOGY

The comparison of estimators has been based on the semi-synthetic data generated
using the real-world data representative of corn oil, nut oil and olive oil (J = 3). The
sequences of the latter data, each containing N = 751 data points, are shown in Fig. 1.

The data for calibration and validation have been synthesized in a way imitating
the procedure used for obtaining the real-world data. First, the reference (exact) values
of the concentrations of corn oil (ċ1) and of nut oil (ċ2) have been selected, and their
error-corrupted versions calculated according to the scheme:

c̃1 = ċ1 + ∆c̃1 and c̃2 = ċ2 + ∆c̃2 (10)
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Fig. 1. The real-world data – representative of corn oil, nut oil and olive oil – acquired by means
of a FTIR spectrophotometer set to a resolution of 1 cm−1.

where ∆c̃1 and ∆c̃2 are variables modelling the errors of sample preparation. Next, the
value of the concentration of olive oil has been calculated:

c̃3 = 1 − c̃1 − c̃2 (11)

Finally, the corresponding spectral data have been determined after the formula:

s̃ = c̃1ṡ1 + c̃2ṡ2 + c̃3ṡ3 + ∆s̃ (12)

where ṡ1, ṡ2 and ṡ3 are the vectors of denoised and baseline-corrected real-world
data representative of corn oil, nut oil and olive oil – respectively, and ∆s̃ is a vector
modelling the errors of spectrum measurement. For generation of the values of ∆c̃1, ∆c̃2

and ∆s̃, pseudorandom numbers, following the normal distribution with the zero-mean
and unit standard deviation, truncated outside of the interval [– 3, 3] have been used.
Those numbers have been multiplied by the standard deviation σc ∈

{

10−7, 10−5, 10−3
}

– to obtain ∆c̃1 and ∆c̃2 – or by the standard deviation σs = 10−6 – to obtain elements
of ∆s̃:
– the unprocessed sequences of pseudorandom numbers, with the standard deviation
σc, have been used for generation of uncorrelated errors in concentration data;

– the same sequences, multiplied by the matrix:

C =












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. . .

...
...
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0 0 0 · · · 0 0 0.8
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











, (13)

have been used for generation of correlated errors in concentration data;
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– the sequences of random numbers, with the standard deviation σs, have been used
for generation of uncorrelated errors in spectral data;

– the same sequences, multiplied by the matrix C, have been used for generation of
correlated errors in spectral data.

Consequently, the correlation of errors in the data has been characterized by the fol-
lowing covariance matrices:

Σc = σ
2
c · C · C

T and Σs = σ
2
s · C · C

T (14)

where:

C · CT
=





















































1.00 0.48 0 · · · 0 0 0

0.48 1.00 0.48 · · · 0 0 0
...

...
...
. . .

...
...

...

0 0 0 · · · 0.48 1.00 0.48

0 0 0 · · · 0 0.48 0.64


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















































(15)

The wavelength values to be used by the operator of concentration estimation,
defined by Eq.(4), have been selected on the basis of the matrix S̃cal, containing in
the consecutive rows complete sequences of spectral data synthesized for calibration.
First, the eigenvalues and eigenvectors of the matrix S̃cal have been computed and two
eigenvectors, corresponding to the largest eigenvalues have been graphically represented
as the functions of wavelength (cf. Fig. 2); the values of wavelength corresponding to
the maxima of those functions have been chosen for further consideration. Next, each
pair of the selected wavelength values, λn1 and λn2, has been characterized by the
conditioning number of the matrix composed of the columns of S̃cal corresponding to
λn1 and λn2. Finally, the wavelength values, which contributed to the largest values of
those conditioning numbers, have been eliminated. This procedure resulted in M = 7
wavelength values indicated in Fig. 2: λ1 = 1710 nm, λ2 = 1728 nm, λ3 = 2142 nm,
λ4 = 2336 nm, λ5 = 2740 nm, λ1 = 2880 nm and λ7 = 2916 nm.

The data for calibration D̃cal have been synthesized using all the pairs (N = 36)
of the following values of concentrations:

ċcal
1 ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1} and ċcal

2 ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1} (16)

The data for validation D̃val have been synthesized using all the pairs (N ′ = 25)
of the following values of concentrations:

ċval
1 ∈ {0.01, 0.03, 0.05, 0.07, 0.09} and ċval

2 ∈ {0.01, 0.03, 0.05, 0.07, 0.09} (17)

Thus, the validation has been carried out over an area of the c1 − c2 plane, slightly
smaller that the area covered by the calibration data. In this way, the impact of bor-
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der effects, masking the performance differentiation of compared methods, has been
mitigated.

Fig. 2. The baseline-corrected spectrophotometric data, two eigenvectors of the data matrix,
corresponding to its largest eigenvalues, and the wavelength values selected for experimentation

(indicated with vertical dashed black lines).

For each pair of σs and σc, both for correlated and uncorrelated errors in the data:
– R = 30 versions of the set D̃cal, corresponding to R realisations of the errors, and
– R versions of the set D̃val, corresponding to R realisations of the errors,
have been generated. For each version D̃cal(r), r = 1, ...,R, of the set D̃cal, an estimate
p̂ (r) of the vector of parameters p has been calculated and used for validation. The
validation has included the following steps:
– determination of the estimates ĉval

1,n

(

r, r′
)

of the concentration ċval
1,n, corresponding

to p̂(r) and to each version D̃val(r′) of D̃val, r′ = 1, ...,R;
– estimation of the bias according to the formula:

b̂val
n (r) = c̄val

1,n (r) − ċval
1,n (18)

where:

c̄val
1,n (r) =

1

R

R
∑

r′=1

ĉval
1,n

(

r, r′
)

(19)

– estimation of the standard deviation according to the formula:

σ̂val
n (r) =

√

√

√

1

R − 1

R
∑

r′=1

[

ĉval
1,n (r, r′) − c̄val

1,n (r)
]2

(20)

– computation of the expanded uncertainty according to the formula:
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ûval
n (r) =

∣

∣

∣b̂val
n (r)

∣

∣

∣ + 3 · σ̂val
n (r) (21)

The results of validation, obtained for each p̂(r), have been aggregated using the
worst-case methodology:

b̂val
= sup

{ ∣

∣

∣b̂val
n (r)

∣

∣

∣

∣

∣

∣ n = 1, ...,N ; r = 1, ...,R
}

(22)

σ̂val
= sup

{

σ̂val
n (r)

∣

∣

∣ n = 1, ...,N ; r = 1, ...,R
}

(23)

ûval
= sup

{

ûval
n (r)

∣

∣

∣ n = 1, ...,N ; r = 1, ...,R
}

(24)

4. COMPARED METHODS OF ESTIMATION

The general definitions of the compared estimators, together with the relevant
references, can be found in the review paper [7]. Here, only some specific features of
their implementations, used for comparison, are characterised.

The OLS estimator has been implemented using the MATLAB operator \ accord-
ing to the following formula:

p̂OLS = S̃cal\c̃cal (25)

The GLS estimator has been implemented using the MATLAB operator \ accord-
ing to the following formula:

p̂GLS =

[

(

S̃cal
)T
· Σ−1

c · S̃
cal
]

\

[

Σ
−1
c ·
(

S̃cal
)T
]

(26)

The values of the regularization parameters in the PLS, RiLS, RoLS and TLS
implementations have been selected as to minimize worst-case expanded uncertainty
of concentration estimates: for each pair of σs and σc, both for correlated and un-
correlated errors in the data, the value of the regularisation parameter corresponding
to the smallest value of ûval has been found. As a consequence, the limit estimation
potential of the studied estimators has been compared rather than the performance of
their particular versions corresponding to various methods applied for optimisation of
regularisation parameters.

The RiLS estimator has been implemented using the MATLAB operator according
to the formula:

p̂RiLS =

[

(

S̃cal
)T
· S̃cal

+ α · I

]

\
(

S̃cal
)T
· c̃cal (27)

with the values of the regularization parameter α shown in Table 1.
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Table 1. The values of α used in the implementation of the RiLS estimator for σs = 10−6.

uncorrelated errors correlated errors

σc = 10−7 σc = 10−5 σc = 10−3 σc = 10−7 σc = 10−5 σc = 10−3

1 · 10−9 1 · 10−9 3.16 · 10−10 1 · 10−9 3.16 · 10−10 1 · 10−9

In the implementation of the RoLS estimator:

p̂RoLS = argp inf



















Ncal
∑

n=1

ρ
(

c̃cal
1,n − pT · s̃cal

n ;∆th

)



















(28)

the Huber function of the form:

ρ (∆;α) =















∆
2 for |∆| ≤ ∆th

0.01 · (2 · |∆| − 0.01) otherwise
(29)

has been used with the values of the regularization parameter ∆th shown in Table 2.

Table 2. The values of ∆th used in the implementation of the RoLS estimator for σs = 10−6.

uncorrelated errors correlated errors

σc = 10−7 σc = 10−5 σc = 10−3 σc = 10−7 σc = 10−5 σc = 10−3

10 10 10−10 10 10 10−10

The implementation of the PLS estimator has been based on the MATLAB procedures
pls and plspred from the Chemometrics Toolbox ver. 2.20 (1993). The selected values
of the regularisation parameter L (number of latent variables) are shown in Table 3.

Table 3. The values of L used in the implementation of the PLS estimator for σs = 10−6.

uncorrelated errors correlated errors

σc = 10−7 σc = 10−5 σc = 10−3 σc = 10−7 σc = 10−5 σc = 10−3

3 3 3 3 3 3

The values of the regularisation parameter K (the index of the selected eigenvector of
the combined matrix

[

S̃cal c̃cal
]

), used in the implementation of the TLS estimator, are
shown in Table 4.
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Table 4. The values of K used in the implementation of the TLS estimator for σs = 10−6.

uncorrelated errors correlated errors

σc = 10−7 σc = 10−5 σc = 10−3 σc = 10−7 σc = 10−5 σc = 10−3

6 4 4 4 5 4

5. RESULTS OF STUDY

The results of study are summarized in Tables 5-8. In Table 5, the limit error
of the concentration estimates, obtained by means of the compared estimators for
exact calibration and validation data, is shown. Its values characterize the accuracy of
computation, i.e. the asymptotic level of estimation accuracy that may be approached
if σc → 0 and σs → 0. In Tables 6-8, the performance of the studied estimators for
non-zero σs and σc is compared, using the indicators b̂val, σ̂val and ûval, defined by
Eqs.(22-24).

Table 5. The limit error of the concentration estimates, obtained by means of the compared estimators
for exact calibration and validation data (σc and σs).

OLS GLS RiLS RoLS TLS PLS

8.67 · 10−15 8.67 · 10−15 8.67 · 10−15 8.67 · 10−15 4.23 · 10−12 9.74 · 10−15

Table 6. The values of the performance indicator b̂val , obtained by means of the compared estimators for
error-corrupted calibration and validation data (σs = 10−6).

uncorrelated errors correlated errors

σc = 10−7 σc = 10−5 σc = 10−3 σc = 10−7 σc = 10−5 σc = 10−3

OLS 3.41 · 10−5 3.99 · 10−5 1.13 · 10−3 3.02 · 10−5 3.73 · 10−5 1.45 · 10−3

GLS 3.41 · 10−5 3.99 · 10−5 1.13 · 10−3 5.26 · 10−5 5.87 · 10−5 1.52 · 10−3

RiLS 3.78 · 10−5 4.32 · 10−5 1.14 · 10−3 3.53 · 10−5 4.08 · 10−5 1.41 · 10−3

RoLS 1.91 · 10−4 1.44 · 10−4 3.46 · 10−3 1.73 · 10−4 2.16 · 10−4 3.39 · 10−3

TLS 1.00 · 10−3 2.98 · 10−4 1.06 · 10−3 6.02 · 10−3 8.93 · 10−4 1.35 · 10−3

PLS 3.15 · 10−5 3.68 · 10−5 1.14 · 10−3 3.15 · 10−5 3.68 · 10−5 1.14 · 10−3
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Table 7. The values of the performance indicator σ̂val, obtained by means of the compared estimators for
error-corrupted calibration and validation data (σs = 10−6).

uncorrelated errors correlated errors

σc = 10−7 σc = 10−5 σc = 10−3 σc = 10−7 σc = 10−5 σc = 10−3

OLS 5.19 · 10−5 5.27 · 10−5 1.48 · 10−3 5.19 · 10−5 5.27 · 10−5 1.48 · 10−3

GLS 5.19 · 10−5 5.27 · 10−5 1.48 · 10−3 6.46 · 10−5 6.72 · 10−5 1.93 · 10−3

RiLS 3.78 · 10−5 4.32 · 10−5 1.14 · 10−3 3.53 · 10−5 4.08 · 10−5 1.41 · 10−3

RoLS 5.19 · 10−5 5.27 · 10−5 1.49 · 10−3 5.31 · 10−5 5.27 · 10−5 1.36 · 10−3

TLS 1.39 · 10−3 7.55 · 10−4 1.22 · 10−3 1.31 · 10−3 1.35 · 10−3 1.21 · 10−3

PLS 4.69 · 10−5 4.80 · 10−5 1.21 · 10−3 4.69 · 10−5 4.80 · 10−5 1.21 · 10−3

Table 8. The values of the performance indicator ûval, obtained by means of the compared estimators for
error-corrupted calibration and validation data (σs = 10−6).

uncorrelated errors correlated errors

σc = 10−7 σc = 10−5 σc = 10−3 σc = 10−7 σc = 10−5 σc = 10−3

OLS 1.70 · 10−4 1.75 · 10−4 4.74 · 10−3 1.73 · 10−4 1.78 · 10−4 4.81 · 10−3

GLS 1.70 · 10−4 1.75 · 10−4 4.74 · 10−3 2.07 · 10−4 2.25 · 10−4 6.53 · 10−3

RiLS 1.56 · 10−4 1.65 · 10−4 4.22 · 10−3 1.61 · 10−4 1.61 · 10−4 4.20 · 10−3

RoLS 2.95 · 10−4 2.68 · 10−4 6.85 · 10−3 2.95 · 10−4 3.17 · 10−4 6.59 · 10−3

TLS 4.32 · 10−3 2.38 · 10−3 4.35 · 10−3 4.12 · 10−3 4.41 · 10−3 4.62 · 10−3

PLS 1.61 · 10−4 1.61 · 10−4 4.20 · 10−3 1.61 · 10−4 1.61 · 10−4 4.20 · 10−3

6. DISCUSSION AND CONCLUSIONS

The comparison of the six LS-type estimators of concentration on the basis of
spectrophotometric data, presented in this paper, has been intended for establishing
a kind of benchmark for evaluation of more advanced – variational and nonlinear –
estimators of concentration. This comparison is still of preliminary nature due to some
methodological limitations:
– The selection of mixtures for data generation has been not optimized, and the

selection of wavelength values for this purpose has been based on the simplest
numerical criteria of ill-conditioning.

– The results of comparison have been obtained by means of semi-synthetic data and
not yet confirmed by means of real-world data.
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Despite the above-mentioned methodological limitations, the accomplished study
enables the authors to conclude that:

– The problem under study (trinary oil mixture analysis) may be solved satisfactorily
using five out of six compared estimators (OLS, GLS, RiLS, RoLS and PLS),
provided the random noise in the spectral data is reduced to the level σs = 10−6,
which requires averaging of thousands of data records even in case of low-noise
spectrophotometers.

– For σs = 10−6, almost the same results are obtained for σc = 10−7 and σc = 10−5;
so, there is no need to prepare calibration samples with extreme accuracy (σc =

10−7) since the effect of this endeavour will be neutralised by the impact of errors
in spectral data.

– The smallest (and almost identical) values of the performance indicator ûval have
been obtained for the RiLS and PLS estimators; so, those two estimators should
be used as a reference in the future study.

– For correlated data, larger values of the performance indicator ûval have been ob-
tained for the GLS estimator than for the OLS estimator. This apparent anomaly may
be explained by the way of data synthesis: the calibration set contains error-free
concentration data and spectral data corrupted by both instrumental errors and
errors due to inaccuracy of preparation of calibration samples.
The study, reported in this paper, has been carried out according to a new method-

ology whose main distinctive features are the following:
– The generation of semi-synthetic data has been performed according to a scheme

imitating the procedure used for obtaining real-world data.
– The performance of the methods of calibration has been assessed on the basis of

the criteria related the uncertainty of the final result of analysis, i.e. of the estimates
of concentration.

– The worst-case performance indicators have been found over the space of data used
for calibration and the space of data used for validation.
Thus, the results of this comparative study should be considered as a significant

step towards experimentation with more advanced nonlinear estimators of concentra-
tion, both from algorithmic and methodological point of view.
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