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AN ITERATIVE PARAMETER ESTIMATION METHOD FOR OBSERVATION

MODELS WITH NONLINEAR CONSTRAINTS

This article presents a parameter estimation algorithm for observation models with nonlinear

constraints. A prominent example that belongs to this category is the continuous auto-calibration

of stereo cameras. Here, our knowledge of the relation between the available measurements and

the desired parameters is given by a nonlinear implicit constraint equation. An estimation method

derived from an Iterated Extended Kalman Filter is designed for this application. Experiments are

conducted with synthetic and real data. The proposed algorithm provides very good results and is

readily applicable to a wider range of applications.
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1. INTRODUCTION

Recursive estimation techniques are important for many computer vision problems

in which image sequences have to be processed. Especially, if the application does not

allow storing all previous images or if computation time is critical, algorithms such as

Kalman filters are a common choice. An example of such an application in computer

vision is the auto-calibration of stereo cameras.

Auto-calibration (or self-calibration) refers to the automatic determination of stereo

camera parameters such as focal lengths or relative orientations of one camera with re-

spect to the other. It is important to note that that many stereo vision applications require

relative orientation with accuracy better than 10−2 degrees. In standard off-line calibra-

tion approaches (e.g. [14]), these parameters are recovered by observing a well-known

reference object. Auto-calibration, however, estimates camera parameters by tracking

points in an arbitrary image sequence acquired by a moving stereo rig [9, 7, 16, 17].

The only input data used for self-calibration are spatial and temporal image point

correspondences, i.e. the coordinates of corresponding points in the left and right
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image as well as the 2D displacement of image points in consecutive frames of one

camera. The author believes that stereo self-calibration will be useful in automotive

applications. Due to large temperature changes and mechanical vibrations, we may not

assume that calibration parameters remain constant over the whole life span of a vehi-

cle. Thus, a continuous self-calibration is required that updates the camera calibration

automatically and permanently while the sensor is in use.

A difficulty with camera self-calibration (as well as with many other problems in

computer vision) are observation models with nonlinear constraint equations: Assume

we are given noisy input data x̂,

x̂(k) = x(k) + e(k), (1)

where x(k) is the ideal measurement vector at time k and e(k) indicates additive noise

components. In case of stereo self-calibration, ideal measurements x(k) are related to

the desired camera parameters z(k) by a nonlinear implicit constraint of the general

form

h(z(k), x(k)) = 0. (2)

Such a nonlinear problem can be handled using an Iterated Extended Kalman

Filter (IEKF, e.g [12, 8]). This algorithm linearizes the constraint function h(.) about

an operation point which is defined by our best available guess of the parameter

vector and the noisy measurements x̂. a standard Kalman filter innovation step is then

performed to obtain a better estimate of the parameters z(k), which subsequently serves

as a new operation point for an additional linearization. This procedure is repeated until

convergence.

The observation model as formulated by Eqs. (1) and (2) is closely related to

Gauss-Helmert-Models which are well known in the photogrammetry literature. As

indicated in e.g. [10], better results could be achieved by computing a corrected mea-

surement vector and linearizing the constraint equation about both the improved state

estimate and the corrected observations. In this article, we present a compact derivation

of an IEKF for observations models with nonlinear constraint equations and show how

to update the measurement vector. It is shown that the linearization about a better

operation point can improve the estimation results significantly.

The performance of our algorithm is demonstrated on the self-calibration of

a stereo rig. Please note, that the auto-calibration method used here recovers only

the extrinsic parameters of the cameras, i.e. the pose of one camera with respect to the

other. This article extends previous work of the same author [3].

The paper is organized as follows: Sec. 2 gives a general derivation of the IEKF

for observation models with nonlinear constraints. This technique is applied in Sec. 3.1

to the partial self-calibration of a stereo camera rig. An analysis of simulation runs as

well as real imagery results demonstrates the advantage of our algorithm over standard

methods (Sec. 3.2). Sec. 4 summarizes our results and concludes the paper.
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2. ITERATIVE PARAMETER ESTIMATION

2.1. Problem formulation

In this section, we present a compact derivation of the IEKF for general obser-

vation models with nonlinear constraint equations. As in standard Kalman filtering,

the estimation process is a two-stage procedure with alternating update (Sec. 2.2) and

prediction steps (Sec. 2.3). Before we describe these steps for implicit observation

models, we shortly outline the general assumptions underlying our filter.

As stated before, our objective is to determine an estimate ẑ(k) of the true state

vector z(k). In case of stereo self-calibration, ẑ(k) represents the desired camera para-

meters. To accomplish this task, we are given at each time instant k noisy measurements

x̂(k) = x(k) + e(k). We assume that x̂(k) is perturbed by additive noise e(k) as defined

in Eq. (1). The additive noise vector e(k) is considered to be a realization of Gaussian

white noise process with covariance matrix Σee(k). To complete our definition of the

observation model, we assume that the ideal state vector z(k) and the (unobservable)

ideal measurement vector x(k) are related by the nonlinear, implicit constraint equation

h(z(k), x(k)) = 0 as in Eq. (2).

The system model that governs the dynamics of the state vector z(k) is given by

the following stochastic difference equation

z (k + 1) = f (z (k) ,u (k) + w (k)) + v (k) . (3)

For camera auto-calibration, the system model defines how the camera parameters

evolve over time and how they are influenced by command signals, e.g. if the focal

length is intentionally adjusted to a different value. In Eq. (3), f is the transition function

and u(k) is the control vector w(k) represents errors in the command signals and the

noise vector v(k) compensates for modelling errors and errors due to linearization.

Both noise components w(k) and v(k) are modelled as realizations of independent

Gaussian random variables with covariance matrices Σww(k) and Σvv(k), respectively.

The covariance matrix associated with the state vector is abbreviated by P(k). We

assume that we are given an initial state estimate z0 with covariance P0 representing

our prior knowledge of the desired parameters.

2.2. Innovation

The starting point of the update step is given by the a priori state estimate z−(k)

at time k and P−(k), the corresponding covariance matrix. These values are either

provided by our prior knowledge of the desired parameters (k = 0) or by the results

of the prediction step in Sec. 2.2 (k > 0). Using the current measurement vector x̂(k),

we will compute both the a posteriori state estimate z+(k) and x+(k), the best estimate
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of the ideal observation vector x(k). Least squares optimal estimates will be obtained

by minimizing (the time index k is omitted in the following paragraphs to improve

readability)
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subject to the nonlinear constraint

h
(

z+, x+
)

= 0. (5)

To solve this optimization problem, we linearize Eq. (5) about an operation point

(ž, x̌). This operation point should be chosen according to our best knowledge of the

true parameters and observations. In a first iteration, we set (ž, x̌) = (z−, x̂) and obtain
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+ h (ž, x̌) (6)

= Az+ + Bx+ + h (ž, x̌) − Až − Bx̌ (7)
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and y = h(ž, x̌) − Až − Bx̌. Using Lagrangian multi-

pliers, we then need to find the extremum of the cost function
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Taking the derivatives of J with respect to the corrected measurements x+, the

corrected state vector z+, and the Lagrangian multiplier η, we get after some algebra

∂J

∂x+
= 0 ⇔ x+ = x̂ + ΣeeB

Tη (10)

∂J

∂z+
= 0 ⇔ z+ = z− + P−ATη (11)

∂J

∂η
= 0 ⇔ Az+ + Bx+ + y = 0. (12)

Substituting Eqs. (10) and (11) in Eq. (12) yields
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(

AP−AT + BΣeeB
T
)

η = −Az− − Bx̂ − y. (13)

For simplicity, we define a transformed observation vector

x̂∗ = −Bx̂ − y, R∗ = BΣeeB
T (14)

and obtain from Eq. (13)

η =
(

AP−AT + R∗
)−1 (

x̂∗ − Az−
)

. (15)

The inverse matrix in Eq. (15) exists if all matrices A, B,Σee and P− have full rank.

This is always true in our application. Combining Eqs. (15), (10) and (11), we have

derived the formulas for computing our corrected observations and state parameters

x+ = x̂ + ΣeeB
T
(

AP−AT + R∗
)−1 (
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(16)

z+ = z− +K
(
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= z− +Kh
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where

K = P−AT
(

AP−AT + R∗
)−1
. (19)

From Eq. (17) and noting that R∗ is the covariance matrix of the transformed

observation x̂∗, we can easily determine the covariance matrix P+ associated with the

updated state estimate

P+ = (I - KA) P−
(

I - KAT
)

+KR∗KT . (20)

Sparse matrix operations can be used to implement Eqs. (16-20) efficiently.

To find a better state estimate, we can now use (z+, x+) as a new operation point (ž, x̌)

for the linearization of the nonlinear constraint function h(.). This process may be

repeated until the difference between two refined state estimates falls below a predefined

threshold or a fixed number of iterations is reached. In [3], experimental evaluations

showed that more than 60% of the improvement by iterated innovation steps is already

obtained after one additional linearization. Furthermore, estimation results did not

change significantly after more than four iterated linearizations. We have thus chosen

to use two additional iterations for the examples in this paper. A summary of the

iteration formulas is given in Tab. 1.

Another approach to deal with implicit measurement constraints is the normalized

Sampson error [11]. The main difference to our approach, however, is the estimation
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of an ideal measurement vector. As will be shown in Sec. 3.2, the iterated linearization

about both corrected state and observation provides results with higher accuracy as

compared to a Taylor approximation of h(.) about an updated state estimate and the

noise measurements x̂.

2.3. Prediction

Given the a posteriori state estimate z+(k) and P+(k) as provided by the innovation

step, we can predict the a priori state vector z−(k+1) and its covariance matrix P−(k+1)

in the next time step k+1. This is achieved using the standard formulas of an extended

Kalman filter (e.g. [4,12]):
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(
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)

(21)
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We have now derived an IEKF for observations models with nonlinear constraints

that not only computes an improved state vector but also an estimate of the true

observation vector for subsequent linearization. Tab.1 summarizes our algorithm.

3. EXTRINSIC AUTO-CALIBRATION OF STEREO CAMERAS

3.1. Stereo self-calibration

In this section, we give a short outline of our algorithm to determine extrinsic

camera parameters (i.e. the orientations of both cameras with respect to a fixed base

line) automatically. A more detailed description can be found in [3]. The nonlinear

constraint equations have also been presented in [2], although without an correction of

the measurement vector for iterated linearizations as derived in this article.

Fig. 1 illustrates the camera parameters that have to be estimated by our stereo

auto-calibration. The extrinsic camera parameters are given by yaw, pitch, and roll

angles (ΨL,ΦL,ΘL) for the left and (ΨR,ΦR = 0,ΘR) for the right camera, respectively.

Please note that ΦR = 0 since the world coordinate system (WCS) was chosen such

that the viewing direction of the right camera is in the x-y-plane of the WCS. The

base length b cannot be determined from image data alone without a known reference

length or known absolute velocity of the observer. In fact, the base length is usually

known quite well from the production process of the stereo rig while the orientations

are hard to determine before hand and are required with an accuracy of about 10−2
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degrees in some applications. Therefore, we do not recover b in this application. In

addition, since we will use the 2D motion of image points between two consecutive

images of the same camera as an input to our calibration

Table 1. IEKF for observation models with nonlinear constraints.

algorithm, we also need to compute the 3D motion of the stereo rig. (ΨM ,ΦM ,ΘM)

and (υx, υy, υz) denote the rotational and translational components of the observer’s

motion, respectively. Our desired parameter is thus given by

z = (ΨL,ΦL,ΘL,ΨR,ΘR,ΨM ,ΦM ,ΘM , υx, υy, υz)
T. (23)

To formulate an observation model, we use epipolar and trilinear constraints as

described in e.g. [2]:

– Epipolar constraint: Let xL = (xL, yL, 1) and xR = (xR, yR, 1) denote the homo-

geneous image coordinates of an object point X in the left and right stereo image,

respectively. These projections are related by the epipolar constraint
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Fig. 1. Camera Model. The world coordinate system (WCS) is located in the middle of the baseline of

the stereo cameras. Additionally, we impose that the X-axis of the WCS is aligned with the base line

and the optical axes of the right camera is in the X-Y-plane. b denotes the base length of the stereo rig

and the rotation matrices are specified in yaw, pitch and roll angles.
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matrices of the left and right camera, respectively. Using e.g. correlation based block
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with errors (ex,L, ey,L)T and (ex,R, ey,R)T. Eqs. (24) and (25) define an observation model

as formulated in Sec. 2.1.

– Trilinear constraints: If – in addition to the extracted stereo matches xL, xR – we can

find a corresponding image point xR+ in the next right image of the sequence (i.e.

a temporal match), we are able to employ trilinear constraints. These constraints

allow stereo-self calibration with higher accuracy than the epipolar constraint. The

trilinear constraints have the following form
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The definition of the exact formulas for the trilinear constraints is beyond the scope

of this paper. The reader is referred to[3].

We can combine all available correspondence features by simply stacking the

epipolar and trilinear constraint equations as well as the corresponding measurement

vectors. The state transition function in this application is given by an identity trans-

formation. If we are given a model of the observer’s motion, this information can be

used here. We have thus defined the implicit observation and the system model for

the extrinsic self-calibration of a stereo camera. Results on simulated data and real

imagery will be presented in the next section.

3.2. Experimental results

To evaluate the effect of linearizing the nonlinear observation constraint equation

about both the estimated parameter vector as well as the corrected measurements (cf.

Sec. 2), two different versions of the self-calibration method were tested on synthetic

image data: The first version, “with corrected observations”, linearized the constraint

function about both the current parameter estimate and the corrected measurement

vector x+(k). The second version, “without corrected observations”, performed lin-

earization about the updated state vector and the uncorrected measurements x̂(k). To

generate artificial stereo and 2D motion correspondence data, we simulated stereo

image sequences of a moving 3D point cloud with 40 points. The generated input data

was perturbed with additive Gaussian white noise of standard deviation pixels and fed

into the auto-calibration algorithm. At each time step, the resulting camera parameters

were used to compute the 3D positions X̂i of the observed image points using Hartley’s

triangulation method. This enabled us to compute a relative 3D reconstruction error

ǫi = ‖X̂i − Xi‖/‖Xi‖ with respect to the true 3D position Xi. Fig. 2 depicts the results

of 40 independent simulation runs. We found that “with corrected observations” yields

significantly better results than “without corrected observations”. The advantage seems

to become dominant when the current state estimate is closer to the true state vector. Af-

ter 40 frames, the difference between the mean relative reconstruction errors is approx.

5% indicating that our algorithm can improve the accuracy of stereo self-calibration.

To show the feasibility of our auto-calibration method on real imagery, we con-

ducted experiments with a hand held stereo-rig in a laboratory environment. Fig. 3

shows typical images of our evaluations. Stereo and temporal matches were extracted

using a Harris corner detector [5] and standard block matching (e.g. [1]). Stereo depth

images were computed using the recovered camera parameters and the stereo matching

procedure as described in [6]. The lower left image of Fig. 3 shows the stereo disparity

map at k = 0 which corresponds to the initial guess used to start the auto-calibration.

Here, a reliable 3D reconstruction was not possible. After 40 frames, our algorithm

provided reliable camera parameters which allowed to compute a dense depth map.

A textured 3D reconstruction of the observed scene at k = 40 is shown in Fig. 4.
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Fig. 2. Recursive self-calibration with and without observation correction. The figure shows the mean

and standard deviations of 40 independent simulations runs. The linearization about both the current

parameter estimate and the corrected observation vector yields an improvement of approx. 5% in the

final relative 3D reconstruction error as compared to a standard IEKF algorithm.

Fig. 3. Self-calibration result after 40 frames. Top: The left and right input images. Extracted features

are indicated by red circles (stereo matches) and green lines (temporal matches). Yellow lines show

corresponding epipolar lines. Bottom: Color coded disparity map (red color indicates close distance to

the observer) at frames k = 0 (initial guess) and k = 40. Note that the initial guess did not allow

a reliable stereo reconstruction while a dense disparity map is obtained using the self-calibration results.
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Fig. 4. 3D reconstruction after self-calibration.

4. CONCLUSION

This paper presents a compact derivation of an extended iterated Kalman filter

(IEKF) for observation models with nonlinear constraints. It is shown that such a re-

cursive algorithm should not only compute estimates of the desired parameters, but also

of the ideal measurements. As compared to standard IEKF approaches, our algorithm

can provide higher accuracy that justifies the additional computational load.

The filter algorithm was utilized for the extrinsic auto-calibration of a stereo rig

and provided very good results on synthetic and real imagery. However, implicit ob-

servation constraints are encountered in a variety of computer vision problems as

e.g. structure-from-motion or tracking algorithms. We believe the presented recursive

estimation method is applicable to a wide range of applications beyond auto-calibration.
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