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OPTICAL VORTICES AS PHASE MARKERS

TO WAVE-FRONT DEFORMATION MEASUREMENT

In this paper a new method to the test deformation of the wave-front of the plane wave is

presented. In the method Optical Vortex Interferometry is applied. In the OVI a regular lattice of

optical vortices is generated by the interference of three plane waves. The wave-front of one wave

is deformed after crossing the measured object. The deformation of the wave-front is measurable

because the deformation of vortex lattice structure arises from the wave-front deformation. The

record of the positions of the vortex points before and after the object insertion in the optical

arrangement is essential. The analysis of the change of vortex points positions, as shown in this

paper gives highly precise information about the real deformation of the wave-front caused by the

object insertion.
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1. INTRODUCTION

Optical Vortices (OV’s) are isolated singularities in the phase distribution of the

optical wave-field [1]. They have some special properties, which have been studied in

the last decade [2]. The OV’s are the subject of many scientific tasks. One of them

is an Optical Vortex Interferometer (OVI) [3]. The OVI is a kind of a multiple beam

interferometer which uses interference of three beams (in other applications which are

not described in this paper more beams may be used [4]). In the OVI a regular lattice

of OV’s is generated by the interference of the three plane beams. The OVI may be

used in a new method of wave-front deformation test. In this method the dislocation of

the OV’s is used to calculate wave-front deformation caused by the parallel glass plate

insertion in the path of one of the beams. Therefore the record of the positions of the

vortex points before and after parallel glass plate insertion in the optical arrangement is

essential. One wave in the OVI is deformed after crossing the measured parallel glass

1 Received: October 16, 2008. Revised: November 24, 2008.
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plate. The deformation of the wave-front is measurable because the deformation of the

vortex net structure arises from the wave-front deformation. The analysis shown in this

paper of the dislocations of the vortex points shown in this paper gives highly precise

information about the real shape of the parallel glass plate. The precision depends on

the OV’s localisation accuracy [5]. Additionally, the described method provides solution

to the problem how to determine where the surface is convex and where it is concave.

The OV may have two opposite topological charges corresponding to the orientation

of the wave-front screw. The sign of the topological charge of the optical vortex can

be determined [6]. The knowledge about the topological charge of the vortices in the

net resolves where the surface is convex or concave.

The interferograms described in this paper can be obtained in the optical arrange-

ment shown in Fig. 1. The main part of the OVI is the set of six beamsplitters. The

beamsplitters are adjusted so as to obtain a regular hexagonal net of OV’s by the

interference of the three plane beams (A,B and C) without the parallel glass plate

(GP). We use a He-Ne laser (632,8nm) and 12bit CCD camera 1344×1024 pix. with

the cell size 6,45×6,45 µm. All simulations in this paper correspond to this equipment.

The interferogram obtained by the three plane waves interference, with the hexagonal

regular net of optical vortices, is shown in the Fig. 2 (Fig. 2a). Additionally in (Fig.

2b) coordinates of vortex points (VP’s) are marked. Coordinates of the VP’s can be

obtained with the use of one of localization methods of the vortex ponts [5]. The lo-

calization methods are described in other publications. The theoretical analysis chosen

to test the method are described in the next section of the paper. The presented method

can be applied in another optical vortex interferometer [7] as well.

Fig. 1. Block diagram of the OVI with tested Glass Plate (GP).
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Fig. 2. Interferogram obtained by the three plane waves (A,B and C) interference a) – interferogram

b) – part of interferogram with VP’s marked.

2. THEORETICAL ANALYSIS

2.1. Data

First we prepare three sets of data. We decide to test the method in three cases:

FIRST: ideal situation with three beams without wave-front deformation, SECOND:

situation with a small wave-front deformation.

ϕ = 0.05 · sin
(

4 · π ·
x

X

)

+ 0.05 · sin
(

4 · π ·
y

Y

)

, (1)
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In contrast to the FIRST and SECOND situations, the deformation in the THIRD

situation can be seen with the naked eye in the interferogram.

When we measure a real object we should record an interferogram like the one

shown in Fig. 2. Moreover we may record three other interferograms with fringe pat-

terns obtained by the two – wave interference (AB, BC and CA). To test the method

we generated interference patterns numerically. Two simulated waves were plane (A

and C). The third wave (B) was generated with non – planar wave-front. The generated
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Fig. 3. Wavefront deformations generated in a) – SECOND situation, b) – THIRD situation.

deformation is shown and described above. The generated interferograms are treated

as measured data without the knowledge about the wavefront shape during data analy-

sis. The end result of the wave-front reconstruction is compared with the theoretical

equations.

2.2. Data analysis

At the beginning of the data analysis in the presented method it is necessary to

localize the VP’s and to determine the sign of topological charge. Methods of the VP’s

localization are described in other publications and any of these may be used. A similar

situation is with the methods of determination of the topological charge sign.

Next the OV’s must be split into two groups according to on the topological charge.

At this stage the groups must be analyzed separately because of the phase difference

between vortex points of vortices with positive and negative signs.

If the amplitude of each wave is constant in the analyzed area then the relative

phases between two waves in VP’s from one group are the same (in 2π range). Next we

obtain two values of the relative phase between the two chosen waves (for example A

and B), ϕ+ and ϕ− appropriately to the sign of the topological charge. In this case the

amplitude of each wave is the same, the two values equal 2π/3 and 4π/3, respectively.

Coordinates of the VP’s from two groups are presented in Fig. 4. Vortex points

from one group are marked by ’x’ and those from the second group are marked by

’o’. In Fig. 4, each line contains the coordinates of the VP’s where the relative phases

between two waves are the same. All neighboring lines of the same type (e.g. dashed)

contain VP’s where the relative phase is changed by 2π. In Fig. 4 a) the lines that are

used to analyze relative phase between waves C and A are shown. In Fig. 4 b) there

lines which are used to analyze the relative phase between waves A and B are shown.

The lines in the Fig. 4 a) are straight because the wave-fronts A and B are plane.

Because the wavefront of wave B is not plane, the lines in Fig. 4 b) are not straight.

In the next step the wavefront distortions are calculated.
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Fig. 4. VP’s coordinates and lines which are used to analyze the relative phase between waves

a) – C and A, b) – A and B.

At this stage it is important which group of the vortices has a positive sign and

which has a negative one. In the analyzed case the vortex marked by ’x’ has a positive

sign of topological charge and the vortex marked by ’o’ an opposite sign. If the lines

from Figure 4 b) are numbered from bottom to the top, the relative phase decreases for

every following line of the type by 2π. The result of this operation is shown in Fig. 5.

If the surface is approximated by the plane and the differences between the plane and

the points from the non-plane surface are calculated then the shape of the wave-front

is obtained.

Fig. 5. Relative phase between waves A and B in vortex points.

2.3. Results

After applying the data analysis described in point 2.2 for data described in point

2.1 we obtained the results shown below.

In Fig. 6 the obtained wavefront shapes after calculations for the FIRST case

are presented. The wave-front should be plane but errors in the VP’s localization
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and numerical interferograms analysis lead to differences between the theoretically

calculated and the reconstructed by about 3*10−3λ.

Fig. 6. Reconstructed wavefront shape of the wave B in the FIRST case (without the wave-front

distortion).

Fig. 7. Results of reconstructions. a), b), c) – the SECOND case, d), e), f) – the THIRD case, a), d) –

the wave-front of the wave B, b), e) – errors of the reconstructions, c), f) – the wave-front of the wave C.
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Because the wave B (with or without the wavefront deformation) interferes with

two plane waves A, the wavefront of the wave B is obtained from the relative phase

between the waves B and A. The vortex points are used as markers because the relative

phase in these points is known. In Fig. 7 results of the reconstructions for two cases

(the SECOND and the THIRD) are shown. For both cases:

a) and d) the results of the wave B wave-fronts reconstructions,

b) and e) the errors of the wave B wave-fronts reconstructions,

c) and f) the results of the wave C wave-fronts reconstructions, are presented.

The wave-front of the wave C is plane so Fig. 7 c) and d) should a present the

plane surface, unlike in the FIRST case.

The errors of the reconstruction were calculated as a difference between the re-

constructed wavefront deformation and deformation from point 2.1 adequately to the

case FIRST, SECOND or THIRD.

3. CONCLUSION

The method presented in this paper may be applied to the test a deformation of

a wave-front caused by optical equipment. Theoretically, the precision of the method

may be about 3*10−3λ. The precision strongly depends on the accuracy of the local-

ization method. The method can be applied to the test reflective surface in a similar

optical arrangement. Unfortunately the presented data analysis cannot be the final ver-

sion because of the reconstruction error. The reconstruction error is sloped almost

as a plane surface and may be eliminated. This reconstruction error arises from the

reference plane obtained from the relative phase between waves A and B (Fig. 5). After

correcting the slope of the reference plane the reconstruction error may be decreased

to 3*10−3λ.
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