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FOUR-PARAMETER SINE-FITTING ALGORITHM FOR DETECTION AND

CLASSIFICATION OF TRANSIENTS AND WAVEFORM DISTORTIONS

This paper describes a new method for detection of some power quality (PQ) disturbances,

namely transients and waveform distortions. The proposed algorithm is based on a modified ver-

sion of the four-parameter sine-fitting algorithm. The sine-fitting algorithm is used to estimate

the parameters of the power system’s voltage signal’s fundamental and to extract the transient

component of the voltage. The performance of the proposed method is compared with previously

developed algorithm and with two commercial PQ analyzers.

Keywords: power quality, sine-fitting algorithms, mathematical morphology, transients, waveform

distortions.

1. INTRODUCTION

Transients and waveform distortions are one of the most common types of power

quality disturbances. Although they do not represent such an inconvenience as inter-

ruptions and sags or the danger of swells, they can represent a serious problem as the

magnitude during the transients can reach up to 4 pu (pu = per unit; relative voltage

scale normalized using the power system’s nominal voltage RMS value) and the high

frequency components of transients and waveform distortions can affect the operation

of equipment connected to the power network (e.g., motors).

Methods for detection of transients and waveform distortions use algorithms to

separate the fundamental of the voltage signal and the transient component that con-

tains the information about the disturbance. The traditionally used methods include:

calculating the cycle-by-cycle difference (comparing a cycle of the voltage signal with

a previous cycle); comparing the measured voltage waveform with an average funda-

mental waveform and using high-pass or notch filters [1]. Algorithms based on the

wavelet transform are also frequently used for transient detection [2].
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In this paper, a method based on a modified four-parameter sine-fitting algorithm

is presented. The performance of the proposed method is compared with the solution

earlier published by the authors based on a digital high-pass filter [3] and with two

commercial power quality analyzers.

2. DETECTION AND CLASSIFICATION OF TRANSIENTS AND WAVEFORM

DISTORTION

The proposed algorithm uses sine-fitting algorithm and a mathematical morphol-

ogy operation called closing to extract, detect and classify disturbances present in the

voltage signal. The block diagram of the algorithm is shown in Fig. 1.

Fig. 1. Block diagram of the detection and classification method.

First, the algorithm uses the four-parameter sine-fitting to separate the voltage’s

fundamental uF and the transient component containing potential disturbance uε. To

simplify the detection process, the signal uε is processed using the mathematical mor-

phology operation closing. After thresholding, if there is an event in the data segment

being processed, the algorithm proceeds to the classification stage where the type of

disturbance (transient or waveform distortion) together with the disturbance’s parame-

ters (magnitude, duration) are determined.

The main steps of the proposed algorithm (i.e., sine-fitting, closing operation and

classification) are described in the following subsections.

2.1. Extraction of the disturbance using four-parameter sine-fitting algorithm

Any component of the measured voltage other than the fundamental component

represents a potential disturbance and has to be analyzed. Therefore an algorithm for

detection and classification of power quality disturbances has to separate the funda-

mental component uF and the component containing possible disturbances uε

u = uF + uε. (1)
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The algorithm for PQ disturbance’s detection described in this paper is based on

sine-fitting algorithm. The sine-fitting algorithm estimates the parameters (amplitude,

phase, frequency and DC component) of the fundamental uF . The signal uε is then

calculated as the difference between the estimated fundamental and the actual measured

signal.

The proposed algorithm uses the modified four parameter sine-fitting algorithm.

This modified algorithm improves the convergence of the known four-parameter al-

gorithm [4]. The four-parameter sine-fitting algorithm estimates the fundamental’s

in-phase (A) and quadrature (B) components, the DC component (C) and signal fre-

quency ω

uF = A cos (ωt) + B sin (ωt) +C. (2)

The initial frequency estimate ω(0) is obtained using the interpolated DFT algo-

rithm [5]. The initial estimate of the rest of the parameters (A, B, C) is obtained using

the three-parameter sine-fitting algorithm [4].

After calculating the initial estimates, the algorithm proceeds to the iterative part

of the four-parameter sine-fitting. First, the reconstructed estimate û
(0)
F

of the signal uF

is determined using (2). In each iteration step, the algorithm builds a matrix D(i)
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and uses this matrix to calculate the vector ∆x̂(i)

∆x̂(i) =
[
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]T
=
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of changes of the parameters being estimated. M is the number of samples and ti are

timestamps of individual samples.

The vector ∆x̂(i) is then used to update the vector of estimated parameters x̂(i)

x̂(i) =
[

Â(i) B̂(i) Ĉ(i) ω̂(i)
]T
= x̂(i−1) + ∆x̂(i) . (5)

Using the newly estimated parameters, û
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F

is determined and the root-mean-square

error of estimation is obtained using
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If the change of the RMS error since the last iteration step is smaller than a certain

level (experimentally set to 10−2) or if the maximum number of allowed iterations (set

to 50) is exceeded, the algorithm is stopped and uε is determined from

uε = u − ûF . (7)

2.2. Processing using morphology operation closing and disturbance detection

The signal uε can be already used for disturbance detection using thresholding.

However, since many of the disturbances that occur in power systems have an oscil-

latory character (e.g., oscillatory transients caused by capacitor switching [1]) there

are often multiple crossings of the threshold level that belong to the same disturbance.

To simplify the detection and classification task, the signal is pre-processed before

thresholding. First, the absolute value of the signal uε is calculated. The mathematical

morphology operation closing [3][6] is then applied to the signal |uε|. Mathematical

morphology operations are frequently used in image processing to process signals

based on their shape. These operations apply to the processed signal a function called

structuring element to highlight certain signal’s features. The proposed method uses the

closing operation to obtain the envelope of the signal |uε | thus removing the multiple

crossings of the threshold level that belong to one disturbance

uMORPH = |uε | • s50. (8)

where s50 is the structuring element. The structuring element s50 is a binary signal

with the length of 50 ms (2 500 samples at sampling rate 50 kS/s).

The closing operation is composed of two other morphology operations: dilation

⊕ and erosion ⊖ that use the same structuring element s

u • s = (u ⊕ s) ⊖ s. (9)

A sample of the output signal of any mathematical morphology operation is ob-

tained using the corresponding input sample and the samples in its neighbourhood.

The size and shape of the neighbourhood are defined by the employed structuring ele-

ment. In case of mathematical morphology, the structuring element is a binary signal

containing a combination of zeros and ones: one indicates that the input sample at the

corresponding position should be included in the calculation; zero means it will be

omitted. The whole output sample is obtained by moving the structuring element along

the input signal and at each position performing the respective morphology calculations

using the input samples that lay on the positions where the structuring element is equal

to one. In case of dilation and erosion the calculations are

(u ⊕ s)[n] = max {u[n − m]} ∀ s[m] , 0,m ∈ S, n − m ∈ U, (10)
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and

(u ⊖ s)[n] = min {u[n + m]} ∀ s[m] , 0,m ∈ S, n + m ∈ U, (11)

respectively, where

S =















{− (NS − 1) /2, . . . , (NS − 1) /2}
{− (NS − 2) /2, . . . ,NS/2}

NS odd

NS even
(12)

U = {1, . . . ,NU}. (13)

and NU is the length of the processed signal u and NS is the length of the structuring

element s.

In the case of the proposed method, the structuring element s50 contains only ones

and is 50 ms long. This means, that the dilation operation (10) is in each step reduced

to calculating the maximum value of the signal |uε | using the samples that correspond

to the ones in the structuring element in its current position. The structuring element

is then moved by one sample and the maximum value of the corresponding part of

the signal |uε| is calculated. This is repeated NU-times. After performing the dilation

operation, the resulting signal is processed using the erosion operation (11). The same

structuring element is used, only this time, the minimum values are calculated in each

step. A more detailed description of this implementation of the closing operation can

be found in [3].

A disturbance is detected when the signal after the closing operation uMORPH

exceeds the threshold level Morph THR.

2.3. Classification

The classification of the detected disturbance is based on typical parameters of

power quality events [7].

Disturbance is marked as a waveform distortion when it has a steady-state character,

i.e., when its duration is longer than 50 ms. This threshold is given by the length of the

structuring element used in (8). The duration of the waveform distortions is determined

using the time instants when the signal uMORPH crosses the Morph THR threshold level.

The magnitude of waveform distortions is determined as the maximum value of the

signal uMORPH during the disturbance.

Disturbances shorter than 50 ms are marked as transients. However, in this case,

the signal with disturbances |uε | has to be processed once again using the closing

operation. This time, the structuring element (s4) is only 4 ms long. Due to the long

structuring element employed in (8) multiple transients that are close to each other

could appear as a single disturbance in the signal uMORPH . The shorter structuring

element is used to obtain the signal uMtr in which individual transients can be detected
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uMtr = |uε | • s4. (14)

Individual transients are detected by thresholding the signal uMtr with the same

threshold level Morph THR as in the disturbance detection stage. The duration of

the transients is determined using the time instants when the signal uMtr crosses this

threshold level. The magnitude of transients is determined as the maximum value of

the signal uMtr during the disturbance.

3. SIMULATION RESULTS

The proposed algorithm was implemented in Matlab and its performance was

compared with the previously published method which uses a digital high-pass filter

instead of sine-fitting [3]. To compare the two algorithms, a signal with a simulated

transient was used. The signal is similar to the one used in [1] for testing of transient

detection algorithms. The test signal is

u(t) = uF (t) + utr (t) . (15)

where uF is the fundamental with a frequency of 50 Hz and RMS value equal to 1 pu.

The test signal is 10 cycles long. The transient, given by the component utr , is 2 cycles

long and starts at the beginning of the 5th cycle

utr (t) = 0.1
√

2 cos (2π 370 t) − 0.0522
√

2 cos (2π 410 t) . (16)

Fig. 2 shows the test signal containing the simulated transient.

Fig. 2. Test signal used in simulations.
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In Fig. 3, the transient components extracted using an IIR high-pass filter (Fig. 3b)

and using the sine-fitting algorithm (Fig. 3c) are shown. Also shown in Fig. 3b and

3c are the differences between the extracted component uε and the original transient

utr . The cut-off frequency of the filter was 100 Hz and its attenuation in the stop band

is 80 dB (for more details see [3]). From Fig. 3 it can be seen that the sine-fitting

algorithm extracts the transient component more accurately. In case of the signal uε
extracted by the digital filter (Fig. 3b), there is a clearly visible distortion and overall

phase-shift caused by the filter’s non-linear phase response. However, the sine-fitting

algorithm (mainly due to its iterative nature) is slower than filtering (in Matlab, it is

approximately 5 times slower).

a)

b) c)

Fig. 3. Original simulated transient component (a) and the component extracted from the signal using

b) digital filtering and c) sine-fitting.

4. EXPERIMENTAL RESULTS

In order to gather real single-phase power quality disturbances from the power

network, a PC-based measuring setup was assembled (Fig. 4). The measuring setup

contains a voltage transducer LEM CV 3-500 and data acquisition board (DAQ) NI

USB-9215 (in Fig. 5 and 8 the transducer and the DAQ are included in the Sensor

box). The nominal input RMS range of the transducer is 350 V and its frequency range

is from DC up to 300 kHz. The sampling rate of the DAQ was set to 50 kS/s. The

measured waveform was divided into data frames 10 cycles long to which the proposed

algorithm was applied.
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Fig. 4. Block diagram of the measuring setup implementing the proposed method.

The performance of the proposed method and its implementation in the measuring

setup was compared with two commercial power quality analyzers: Fluke 434 and

Chauvin Arnoux C.A 8334B. The Fluke 434 analyzer has an input range of 500 V,

frequency bandwidth 100 kHz and sampling rate 200 kS/s per channel. The C.A 8334B

has a voltage range of 480 V and sampling rate 12.8 kS/s per channel.

4.1. Measurement of disturbances in the power system

In the first measurement, the measuring setup with the proposed method and the

two considered commercial power quality analyzers were connected to a single phase

230V/50Hz power system (see Fig. 5).

Fig. 5. Measuring setup for measuring of power quality disturbances in the power system.

Fig. 6 shows an example of one transient measured using the three considered

instruments.

In Fig. 7, the processing of this transient using the proposed method is shown.

One cycle of the voltage signal containing the transient together with the fundamental

uF estimated using the four-parameter sine-fitting algorithm is shown in Fig. 7a. In

Fig. 7b the calculated transient component uε is shown. Figure 7c depicts the signals

used to detect and classify the disturbance.

The magnitude of the disturbance measured by the proposed method was 0.59 pu

and its duration was 1.9 ms. The magnitude measured by the C.A 8334B analyzer was

123.7 V (0.54 pu). The Fluke 434 analyzer does not extract any information (neither

magnitude nor duration) about transients.
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a) b)

c)

Fig. 6. An example of one transient measured using a) measuring setup with the proposed method;

b) power quality analyzer Chauvin Arnoux C.A 8334B and c) power quality analyzer Fluke 434.

a)

b) c)

Fig. 7. Example of a measured transient a) voltage waveform with the fundamental; b) the transient

component extracted using sine-fitting; c) signals used in disturbance detection.



450 P M. R, T́̌ R, A. C S

4.2. Measurement of transients generated by a power source

In order to compare the detection capabilities of the proposed method with the

two commercial power quality analyzers, the measuring set-up depicted in Fig. 8 was

assembled.

Fig. 8. Measuring setup for measuring of power quality disturbances generated by the power source.

In this setup, the power signal was generated by the Agilent 6811B Power Source.

The power signal contained in every 10th period one transient with specified parameters.

Two types of transients were generated: i) impulsive transients (similar to the ones that

originate from lightning strikes) and ii) oscillatory transients (which are caused in

power systems e.g. by capacitor switching).

The impulsive transients were generated using

uTR (t) = V0

(

e−t/τb − e−t/τa
)

. (17)

from [1] where τa = 71 µs and τb = 0.2 µs. The value of V0 was adjusted to obtain

transients with the desired peak values.

The oscillatory transients were generated using

uTR (t) = ATRe−t/τ cos (2π fTRt) . (18)

from [1] where τ = 1 ms, fTR = 920 Hz. Due to the power source’s limitations, it

was not possible to generate transients with higher frequencies because the bandwidth

of the employed power supply is 1 kHz. To cover at least the frequency range of low

frequency oscillatory, an instrument with bandwidth of 5 kHz [7] would be required.

The detection thresholds of all instruments were set to approximately the same

level. The threshold Morph THR of the proposed method was set to 0.1 pu; the thresh-

old of the Fluke 434 was set to 23 V and the detection threshold of the C.A 8334B

was set to 10%. The analyzers Fluke 434 and C.A 8334B can only store 40 and 50

transients at a time, respectively, which limited the time of continuous measurement.

All three instruments were set to an approximately 8 second long measurement. At
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the end of the measurement interval, the success rate of detection of transients that

occurred during this interval was evaluated.

Table 1 shows the percentage of impulsive transients detected by the instruments.

Transients with peak values from VPP = 0.1 up to 1.3 pu and in 3 different positions

within the power signal’s period (φ = 0˚, 30˚ and 90˚) were generated. Blank fields in the

table represent configurations that the employed power source is not able to generate.

Table 1. Results of detection of impulsive transients using the considered power quality analyzers.

VPP

(pu)

φ = 0˚ φ = 30˚ φ = 90˚

Proposed

method

Fluke

434

C.A

8334B

Proposed

method

Fluke

434

C.A

8334B

Proposed

method

Fluke

434

C.A

8334B

0.1 100 % 12.5 % 0 % 100 % 0 % 0 % 100 % 0 % 0 %

0.2 100 % 100 % 83.3 % 100 % 100 % 81 % 100 % 67.5 % 81 %

0.3 100 % 100 % 81 % 100 % 100 % 81 % 100 % 100 % 81 %

0.4 100 % 100 % 81 % 100 % 100 % 83.3 %

0.5 100 % 100 % 85.7 % 100 % 100 % 81 %

0.75 100 % 100 % 83.3 %

1.0 100 % 100 % 92.9 %

1.3 100 % 100 % 81 %

The proposed method was able to detect all transients. The Fluke 434 had problems

detecting transients with the smallest magnitudes, however these problems may have

been caused by the threshold setting (the disturbances with 0.1 pu have the same ampli-

tude as the threshold level). The C.A 8334B had more problems detecting disturbances.

Table 2. Results of detection of oscillatory transients using the considered power quality analyzers.

ATR

(pu)

φ = 0˚ φ = 90˚ φ = 180˚

Proposed

method

Fluke

434

C.A

8334B

Proposed

method

Fluke

434

C.A

8334B

Proposed

method

Fluke

434

C.A

8334B

0.1 100 % 10 % 0 % 100 % 0 % 0 % 100 % 2.5 % 0 %

0.2 100 % 100 % 83.3 % 100 % 75 % 81 % 100 % 100 % 81 %

0.3 100 % 100 % 83.3 % 100 % 100 % 81 % 100 % 100 % 83.3 %

0.5 100 % 100 % 81 % 100 % 100 % 81 %

0.75 100 % 100 % 83.3 % 100 % 100 % 83.3 %

1.0 100 % 100 % 81 % 100 % 100 % 81 %

1.25 100 % 100 % 83.3 %
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Some can be attributed to the narrow frequency band. However, this does not explain

all missed transients (especially the ones with greater magnitude).

Similar results were obtained in case of oscillatory transients as shown in Table 2.

Again, the proposed method detected all transients, the Fluke 434 analyzer had prob-

lems with the smallest magnitudes and the C.A 8334B had a success rate just over

80% at best.

4.3. Measurement of waveform distortions generated by the power source

With the same measurement setup, the Agilent 6811B Power Source was config-

ured to generate waveform distortions. In order to test the capability of the considered

instruments to detect the disturbance and to determine its parameters (duration, mag-

nitude), the generated signal was composed of 7 periods of a voltage signal without

distortion and approximately 3 periods (59.96 ms) with added harmonic distortion.

Due to the limitations of the power source in the arbitrary waveform mode, it is

only possible to generate repeating patterns with 10 periods which limits the possible

lengths of signal with and without distortion. The total harmonic distortion (THD)

of the signal during the distortion was set to values from 1% to 15%. The distortion

contained harmonics up to the 20th (the bandwidth of the power source is 1 kHz) and

the phase of each higher harmonic was random.

The threshold Morph THR of the proposed method was set to 0.065 pu. With this

setting, the proposed method was able to detect all waveform distortions with THD

greater than 3%. Figure 9 shows an example of a waveform distortion detected by the

measuring setup with the proposed method. The THD during the distortion was 7.5%.

The proposed algorithm determined the duration of the waveform distortion to be

59.88 ms and its magnitude (determined as the maximum value of the |uMORPH |) to be

0.161 pu. The signals calculated in the course of detection and classification cannot

be directly used to calculate the THD during the disturbance and some other methods

would have to be employed (e.g., multiharmonic sine-fitting [8]).

The Fluke 434 and C.A 8334B analyzers use values of total harmonic distortion

calculated according to the IEC 61000-4-7 standard [9] to detect harmonic waveform

distortions. Fluke 434 uses the group total harmonic distortion THDG [9, eq. 5]. C.A

8334B uses the total harmonic distortion THD [9, eq. 4]; however it uses a window

4 periods long [10] instead of 10 periods as required by the standard [9]. Because of the

employed algorithms, neither of the analyzers was able to indicate the correct THD level

of the disturbance which resulted in not being able to detect all generated waveform

distortions. For example, when generating harmonic distortion with THD = 15%, Fluke

434 was showing THDG = 8.1% and C.A 8334B was showing THD between 0% and

11%. The IEC 61000-4-7 algorithms give a correct result only when the disturbance

is presented in the whole 10 period window. The IEC 61000-4-7 algorithms cannot
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a)

b) c)

Fig. 9. Example of a waveform distortion generated by the power source a) voltage waveform containing

the distortion; b) the waveform distortion extracted using sine-fitting; c) signals used in disturbance

detection.

reliably detect distortions that are shorter than 10 periods even when their magnitude

is significant and can cause problems to the equipment connected to the power system.

4.4. The proposed method and voltage fluctuations

Voltage fluctuations (which can be the origin of flicker [11]) are common in power

systems. Although the proposed method does not include detection of voltage fluctu-

ations it is important to test its behaviour (namely the behaviour of the 4-parameter

sine-fitting algorithm) under these conditions.

In this measurement, the Agilent 6811B was programmed to generate a sine sig-

nal that included voltage fluctuation with f = 5 Hz and depth of modulation [11]

∆V /V = 10%. The 4-parameter sine-fitting algorithm was then applied to the signal

acquired using the measuring setup. The algorithm was applied to segments of the

measured voltage that were 10 000 samples long (10 periods of the power signal).

Figure 10a shows the estimated fundamental uF and the measured voltage u. From

this figure it can be seen that sine-fitting algorithm is able to work even when there

is voltage fluctuation present in the voltage signal. The estimated amplitude of the

fundamental is the average amplitude of the signal during the processed segment.

Figure 10b shows the residuals after the sine-fitting. These residuals can be further



454 P M. R, T́̌ R, A. C S

processed in order to obtain information about the fluctuation. Figure 11 shows the

FFT spectrum of the residuals (for window length N = 50 000 samples) which allows

to determine e.g. the frequency of the voltage fluctuation.

a) b)

Fig. 10. Performance of the 4-parameter sine-fitting algorithm in the presence of voltage fluctuations:

a) detail of the measured voltage u and estimated fundamental uF ; b) the residuals after sine-fitting uε .

Fig. 11. FFT spectrum of the residuals shown in Fig. 10b.

5. CONCLUSIONS

A new method for detection and classification of transients and waveform distor-

tions is presented in this paper. The method uses a modified version of the four-parame-

ter sine-fitting algorithm and the morphology operation closing to extract and process

the transient component of the voltage in the power system.
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The proposed method was compared with a previously developed method based on

a digital high-pass filter. The proposed method is slower but it is more accurate because

it does not experience the problems with the non-linear phase response characteristic

of IIR filters. As a by product, the sine-fitting algorithm returns the estimates of the

instantaneous frequency and amplitude of the voltage’s fundamental which can be used

in further analysis of the power quality.

The performance of the proposed method was compared with two commercial

power quality analyzers: Fluke 434 (which complies with the IEC 61000-4-30 Class

B specification) and C.A 8334B. The three instruments were used for monitoring of

a single-phase power system. During the monitoring they were able to detect all dis-

turbances that occurred during the monitoring. However, due to the limited memory of

the commercial power quality analyzers, the monitoring period was limited to approx-

imately 2 hours (because of the number of disturbances that occur in the monitored

power system). For a more detailed comparison of the performance, a power signal

containing transients with different characteristics was generated using the Agilent

6811B Power Source. The performance of the proposed method was the same or better

as the performance of the Fluke 434 analyzer.

Even though the presented measurements do not represent a full test of compliance

with power quality standards they show that the proposed method is suitable for reliable

and on-line detection of the considered power quality disturbances. In case of waveform

distortions, the proposed method offers higher time resolution than the methods based

on the IEC 61000-4-7 standard.
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