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SEVERAL APPROACHES TO ADC TRANSFER FUNCTION APPROXIMATION

AND THEIR APPLICATION FOR ADC NON-LINEARITY CORRECTION

The performance of current electronic devices is mostly limited by analog front-end and

analog-to-digital converter’s (ADC) actual parameters. One of the most important parameters is

ADC nonlinearity. The correction of this imperfection can be accomplished in the output data but

only if the nonlinearity is well characterized. Many approaches to ADC characterization have been

proposed in scientific articles in the last several years. In this paper three different approximations

of ADC low-frequency non-linearity (common polynomials, Chebyshev polynomials and Fourier

series) were analyzed and the practical applicability, approximation accuracy and noise sensitivity

were investigated. The first results of nonlinearity correction were presented, too.

Keywords: analog-to-digital converter, ADC nonlinearity, transfer function approximation, nonlin-

earity correction.

1. INTRODUCTION

One of the most important parameters of analog-to-digital converters is the nonlin-

earity. ADC nonlinearity is inherently described by the Integral Non-Linearity INL(n),

so the difference of ADC ideal and actual transfer function, where n is the input code.

However, only a single number for the INL(n) is often presented in manufacturer’s

datasheets (INL) that stands for the maximum value of the INL(n) curve.

ADC nonlinearity particularly depends on input signal parameters. Even though the

nonlinearity shows strong dependency on signal frequency, this effect can be mostly

neglected for signal frequencies significantly lower than ADC sampling frequency.

Consequently, ADC nonlinearity can be described only as a function of signal input

level.

The nonlinearity causes harmonic distortion in the digitized signal, which can be

expressed in the frequency domain by the THD (Total Harmonic Distortion) parameter.

This is also a single value parameter, but the frequency spectrum can provide similar
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information as the curve of the INL(n) in the code domain (amplitudes and phases of

harmonic components). However, the INL(n) is more advantageous in the case when

the LUT-based correction of an ADC transfer function is demanded.

The curve of the INL(n) can be split into the low-code frequency component (LCF)

and the high-frequency component (HCF). The LCF dominates in practice hence the

HCF is not needed for rough approximation of the INL(n). Unfortunately an exact

break-point between those two components does not exist [1], [2], [3], [4].

Histogram test described in IEEE 1241 Standard [5] enables the computation of

both LCF and HCF parts of the INL(n); but, this method demands a huge number of

samples in a record to achieve reasonable confidence levels. When only the LCF is

demanded, significantly lower number of samples is sufficient for an accurate estimation

of the INL(n). Common frequency spectrum of the acquired signal can be used for the

computation of this curve then.

The methods of ADC non-linearity approximation investigated in this paper calcu-

late the coefficients from the frequency domain [6], [7]. Three types of approximations

(common polynomials [1], Chebyshev polynomials [8] and Fourier series [9]) were

described in section 2. The evaluation of the proposed approximations was performed

in section 3 (applicability, accuracy and noise sensitivity) and non-linearity correction

was tested in section 4.

2. APPROXIMATION OF INL CURVE

2.1. Common polynomials

In the case of common polynomials [1] the INL(n) is approximated by

INL(n) =

Kmax
∑

k=0

akxk(n). (1)

where ak are the coefficients of the nonlinearity up to the maximum order, Kmax , which

is the highest harmonic component considered. Index k in summation starts from zero

because all even order nonlinearity coefficients induce a DC level as well as all odd

nonlinearity coefficients induce a contribution to the first order component.

The relation between nonlinearity coefficients, ak, and the amplitude of hth har-

monic components, Yh, in the frequency spectrum is done by the formula [10]

Yh =

s
∑

n=0

(2n + h)!

22n+h−1n!(n + h)!
a2n+hX2n+h

1 , (2)
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where X1 is the amplitude of the input fundamental component, s = (P–h)/2 for P–h

even and s = (P–h–1)/2 for P–h odd, and P is the highest computed power. This

relation can be expressed in matrix form as

Y = X · a. (3)

E.g. this equation for the 3rd order approximation is [1]
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Polynomial coefficients can be determined from (3) by inverting matrix X

a = X−1Y. (5)

2.2. Chebyshev polynomials

Assuming terminal based INL(n) and given Chebyshev polynomials [8] of the first

kind Th(cos(x)) = cos(hx), the INL(n) can be approximated by

INL(n) =
c0

2
+

Hmax
∑

h=2

chTh(n). (6)

where ch are the coefficients of the nonlinearity up to the maximum order Hmax , (same

as above). The summation coefficient starts from two due to the orthogonality on

the interval [1; 1] (e.i. one polynomial influences only one spectral component). This

is the basic and important characteristic of Chebyshev polynomials. The relation of

coefficients and harmonic components can be expressed similarly to (3) as

Y = T · c. (7)

but unlike to (4) in the example of 3rd order approximation T is only a diagonal matrix

[11]





































Y0

Y1

Y2

Y3





































=





































2 0 0 0

0 T1 0 0

0 0 T2 0

0 0 0 T3









































































c0

c1

c2

c3





































. (8)

The determination of the matrix of coefficients c is obvious.



504 P. S, D. S, V. H

2.3. Fourier series

In the case of Fourier series [9] the INL(n) is approximated by

INL(n) =
a0

2
+

2N−1
∑

k=0

[

ak cos(
2π

2N
nk) + bk sin(

2π

2N
nk)

]

. (9)

where ak and bk of a known INL(n) can be found using the well-known expressions

ak =
1

2B

2B−1
∑

n=0

INL(n) cos(
2π

B
nk), k ∈ {0, 1, ..., 2B − 1}

bk =
1

2B

2B−1
∑

n=0

INL(n) sin(
2π

B
nk), k ∈ {1, ..., 2B − 1}

. (10)

where 2B–1 is the number of transition levels of a B bit ADC and k is the index of

the coefficients. The INL(n), from which ak and bk are calculated, is considered to be

periodical; from this reason it is better to use the terminal-based INL(n) [5] in order

to minimize the step between the start and end of the INL(n).

For the input normalized signal

x(m) =
2B

XFS

(X1 cos(θm) + X0) . (11)

the output signal is

y(m) = x(m) +
a0

2
+

2B−1
∑

k=1

ak cos

[

2πk

XFS

(X1 cos θm + X0)

]

+

2B−1
∑

k=1

bk sin

[

2πk

XFS

(X1 cos θm + X0)

]

(12)

that can be expressed by

y(m) = x(m) +

Hmax
∑

h=0

Yh cos (hθm). (13)

where Yh represents the hth output harmonic component that can be expressed by means

of Bessel functions of the first kind Jh(.) with order h.

Y2h = 2 (−1)h

2B−1
∑

k=1

(

ak cos
2πkX0

XFS

+ bk sin
2πkX0

XFS

)

J2h

(

2πkX1

XFS

)

h ≥ 1

Y2h+1 = 2 (−1)h

2B−1
∑

k=1

(

bk cos
2πkX0

XFS

− ak sin
2πkX0

XFS

)

J2h+1

(

2πkX1

XFS

)

h ≥ 0

. (14)
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XFS is ADC full-scale range, X0 is input signal DC offset and θm is input signal sam-

pling phase. The coefficients ak , bk can be determined from equations (14) expressed

in matrix form.

3. EVALUATION OF THE PROPOSED APPROXIMATIONS

3.1. Applicability

Practical applicability of the approximations mentioned above was tested on a real

curve INLreal(n), which was obtained by measuring 14-bit digitizer (National Instru-

ments PXI 5122). The real INLreal(n) spaned around 80% of whole full scale range of

the tested ADC. A simulated cosine wave x(m) was input to this nonlinearity. Then,

the output signal is done by

y (m) = x (m) + INLreal (x(m)) . (15)

The coefficients of each approximation were calculated from the frequency spec-

trum of output signal y(m) and used for the reconstruction of the INLapprox(n). The

results are shown in Fig. 1. Simulations showed that common polynomials can ap-

proximate only a rough plot of the INL(n) curve up to approximately 150 coefficients

(Fig. 1a, 1b). The quality of approximations by Chebyshev polynomials and Fourier

series is comparable. Fourier series can approximate the INL(n) curve in more detail

(see Fig. 1c).

The advantage of Fourier series, unlike the other two polynomial based approxi-

mations, is the capability to approximate sharp transitions in the INL(n) curve. On the

other hand, Fourier coefficients lead to very complex but stable solutions. However in

most practical applications, the number of coefficients up to 10 is sufficient and all

mentioned approximations can be applied.

3.2. Accuracy evaluation

The approximated INLapprox(n) calculated from the frequency spectrum of y(m)

were compared with the actual INLreal(n) measured by histogram method. The accuracy

of approximations was evaluated by means of the Mean Square Error MSE (16) and

the absolute value of maximum error Emax (17) defined as

MSE =
1

N

N−1
∑

n=0

(

INLreal(n) − INLapprox(n)
)2
. (16)

Emax = max
∣

∣

∣INLreal(n) − INLapprox(n)
∣

∣

∣ . (17)
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Fig. 1. INL(n) approximations.

where N is the length of both INL(n) curves chosen as N = 2B–1, B is the nominal

number of bits of the tested ADC. The results with respect to the number of coefficients

are shown in Table 1.

Table 1. Mean square error (MSE) and maximum error (Emax) for different numbers of coefficients,

no noise added.

100 coefficients 200 coefficients 2000 coefficients

MSE

(LSB2)

Emax

(LSB)

MSE

(LSB2)

Emax

(LSB)

MSE

(LSB2)

Emax

(LSB)

Common polynomials 0.08 1.53 0.65 3.39 0.65 3.39

Chebyshev polynomials 0.05 1.39 0.04 1.20 0.01 0.50

Fourier series 0.05 1.56 (1.32)∗ 0.04 1.49 (1.01)∗ 0.01 0.50

For small number of coefficients – in this case 100 coefficients (see Fig. 2a) – all

approximations successfully fitted the nonlinearity and the values of MSE and Emax

achieved comparable levels. When the number of estimated coefficients reached roughly
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170, the approximation by common polynomials failed and it provided only a straight

line as the result (see Fig. 1b). Consequently the value of MSE and Emax parameters

was much higher in relation with Chebyschev polynomials and Fourier series when

considering 200 coefficients (see Fig. 2b). For the number of 2000 coefficients (see

Fig. 2c) the MSE and Emax were still lower and at comparable values for Chebyshev

polynomials and Fourier series.

It is important to mention that in the case of Fourier series the most error-prone

part of the approximated INL(n) is the beginning and the end of the INLapprox(n) curve.

This is caused by non-strictly continuous periodical extension in higher derivations of

the INLapprox(n) curve. If the beginning and the end of each approximation are omitted

from error calculation, the MSE and Emax are even smaller (the values denoted by *

in Table 1) for 100 and 200 coefficients. The number of 2000 coefficients is sufficient

for good approximation of higher derivations in the INLapprox(n) curve.

In general, the performance of Chebyshev polynomials and Fourier series is com-

parable, although the complexity of Chebyshev polynomials is smaller and they are

consequently easier to implement.

Fig. 2. Errors of INL(n) approximations (detail).
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3.3. Noise sensitivity

One of the most important parameters of every algorithm is the sensitivity to noise.

The analysis of the influence of noise to the proposed approximations was performed

on model structure shown in Fig. 3, where x(m) is the input signal, y(m) is the output

signal, which is the output code of an ADC, and e(m) is the noise added to the converted

signal. White noise with normal distribution with variance σ2 was considered.

Fig. 3. ADC model used in the analysis.

The procedure of noise sensitivity evaluation (simulated in Matlab) consisted of in

the computation of approximation coefficients from the complex frequency spectrum

of the output signal y(m) with additive noise. The differences of the INLapprox(n)

reconstructed from the calculated coefficients and the actual INLreal(n) are presented

in Fig. 4.

The results of all approximations for 100 coefficients are roughly comparable;

only the sensitivity of mean square error to noise of the approximation by common

polynomials was low (see Fig. 4a). Since this approximation failed at higher number

of coefficients it was not plotted in further figures. The sensitivity to noise of the

approximation applying Chebyshev polynomials and Fourier series was comparable

for higher number of coefficients (see Fig. 4b, 4c). However, the approximation by

Fourier series gave the lowest maximum errors for significant noise. Generally the

higher number of coefficients is used the more are the approximations sensitive to

additive noise.

4. NONLINEARITY CORRECTION BASED ON INL(N) APPROXIMATIONS

When the coefficients and consequently the INL(n) curve are known, a simple

look-up-table (LUT) correction for the nonlinearity can be performed. For this purpose

a transfer function TF(n) has to be calculated as the sum of a straight line n and the

INLapprox(n). If no difference between the INLapprox (n) and INLapprox (n+1) is bigger

than 0.5 LSB for any n, the transfer function z = TF(n) is purely monotone and its

inverse function n = TF−1(z) does exist.
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Fig. 4. Errors of INL(n) approximations in dependence on additive noise.

Fig. 5. Frequency spectra of output signal.

The first experimental ADC corrections were performed on the real curve INLreal(n)

of the NI PXI 5122 digitizer (see above). Chebyshev approximation of the INL(n) by
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100 coefficients was computed for a simulated input cosine wave with additive noise

of 2 LSB standard deviation. The LUT was computed numerically: noninteger n was

searched that corresponded to integer z. Frequency spectra of the output signal without

and with this correction are shown in Fig. 5.

5. FURTHER WORK

All analyses carried out in this paper employ coherent sampling that is in practice

difficult to achieve. In case of non-coherent sampling leakage occurs and windowing is

unavoidable. The influence of non-coherency and window types should be evaluated.

The correction of ADC nonlinearity performed so far was based on a simple LUT

computed numerically. In the next step the inverse transfer function will be expressed

analytically and applied for on-line correction.

6. CONCLUSIONS

Accuracy and noise sensitivity of three types of approximations (common polyno-

mials, Chebyshev polynomials and Fourier series) of low-frequency ADC nonlinearity

were analyzed. Coefficients of all approximations were computed from frequency spec-

tra of simulated signals applied on the nonlinearity of a real 14 bit ADC. A simple

LUT based correction of ADC nonlinearity was performed.

Accuracy evaluation showed that all approximations perform comparably for small

orders (number of coefficients). For higher number of coefficients the approximation by

common polynomials fails while Chebyshev polynomials and Fourier series perform

similarly and well. Fourier series are capable to follow sharp transitions in ADC transfer

curve and reach the lowest maximal errors. The disadvantage of this approximation is

its complexity and the necessity of periodical extension of the nonlinearity. The higher

number of coefficients is used for all approximations the more are the approximations

sensitive to additive noise. The correction of ADC nonlinearity enabled a significant

suppression of ADC harmonic distortion in the simulated signal.
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