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DETERMINING THE UNCERTAINTY OF FITTING DISCRETE

MEASUREMENT DATA TO A NOMINAL SURFACE

Coordinate measurements are a source of digital data in the form of coordinates of measure-

ment points with a discrete distribution on the measured surface. Geometric deviations of freeform

surfaces are determined at each point as normal deviations of these points from the nominal surface

(a CAD model). The calculations are preceded by fitting the measurement data to the CAD model.

The relations between the workpiece coordinate system and the coordinate system of the machine

are described by the transformation parameters. This paper presents the idea of the process of data

fitting with the use of the least square algorithm method as well as the way of determining the un-

certainty on the assumption that transformation parameters are subject to a cumulative normal prob-

ability distribution. The theoretical issues were verified by experiments carried out on a freeform

surface obtained in the milling process and characterized by quasi-random geometric deviations.
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1. INTRODUCTION

Computer-aided measurement techniques tend to dominate in measuring geometric

dimensions connected with machine parts. These techniques involve determining the

coordinate values of measurement points situated (using a touch or non-touch system)

on the workpiece surface. As the result of the measurement, a set of discrete data is

obtained. From the point of view of CAD/CAM techniques, the most important feature

of coordinate measurements is providing data concerning the workpiece in the digital

form.

A typical machine part geometry is described with simple geometric shapes:

straight lines, planes, circles, cylinders, etc. In coordinate measurements, macroin-

structions built in software are used; on the basis of the coordinates of measurement

points, first geometric associated features, and later their dimensions and shape and
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location deviations, are determined. The accuracy inspection is reduced to comparing

the determined dimensions with the data contained in construction drawings.

Growing demands concerning product functionality, ergonomics, and aesthetics

force the creation of machine parts composed of 3D curvilinear surfaces. Such parts

are shaped by surfaces which cannot be described with simple mathematical equations.

Accuracy inspection involves digitalizing the measured object (coordinate measuring

with the use of the scanning method) and later comparing the obtained measurement

points coordinates to the CAD design (model). At each measurement point, geometric

deviations, or the distances of these points from their projections on the nominal

surface, are determined. The processed accuracy inspection results can be presented

in the form of a three-dimensional plot or a deviation map.

The majority of problems in coordinate measurement technique theory results from

the discrete character of measurement data. These problems might be divided into two

categories:

– different calculation algorithms produce different measurement results for the same

set of data,

– different sampling strategies (number and location of measurement points) provide

different measurement results for the same surface regardless of applying the same

calculation method.

The latter problem category is connected with the fact of measuring a finite number

of discrete points on the measured surface described actually by an infinite number

of points. Since geometric deviations are different at each point, measurement results

depend on the number and location of these points. For the same reason, the number

and location of points have an influence on the determination of geometric features

which form the basis of the workpiece coordinate system [1,2,3,4]. The surface geo-

metric deviations variability is therefore the source of uncertainty in determining the

workpiece coordinate system. Consequently, the values of measurement point coordi-

nates determined in this system (and thus the values of geometric deviations) are also

characterized by this uncertainty.

Before determining the geometric deviations of regular surfaces it is necessary to

determine an associated feature from the obtained data. In measuring such surfaces

composed of typical geometric features (circles, cylinders, cones, etc.), one of the

four methods of determining associated features might be applied [5]. However, it

is not possible to determine nominal shapes of curves and freeform surfaces out of

measurement data. Processing and measuring these types of surfaces are performed

on numerical control devices, using the information on nominal shapes, included in

the imported CAD model, to create controlling programmes. For the above mentioned

reasons, the software of coordinate measurement machines best-fits obtained data to

the nominal surface (CAD model), and the least square method is the most often used

method here [4,6]. The idea of this process is described in Chapter 2.

This paper presents the idea of determining the limits of the uncertainty of the

coordinate system location of a workpiece determined in the process of fitting data to
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the nominal surface with the least square method. The experiments were performed on

a freeform surface characterised by quasi-random geometric deviations.

The experiments were carried out with the use of a MISTRAL STANDARD

070705 coordinate measuring machine equipped with a Renishaw TP200 touch trig-

ger probe with a stylus of 20 mm in length, with a ball tip of 2 mm in diameter,

MPEE = 2.5 + L/250.

2. IDEA OF FITTING MEASUREMENT DATA

An ideal (nominal) shape of a surface part might be described with the N(p) shape

function, where p is the set of parameters describing the surface. After the workpiece

has been made, its real shape might be described as follows:

M(p) = N(p) + ε(p), (1)

where:

M(p) – the real shape of a surface part,

ε. (p) – geometric deviations.

In coordinate measurements, the coordinates of measurement points are determined

on the real surface in the machine coordinate system. The determined coordinates of

the i-th point on the M(p) surface might be described as follows:

Xi = T (t)Mi(p) + ei, (2)

where:

T (t) – transformation matrix between the workpiece coordinate system and the

machine coordinate system,

t – transformation, rotation and translation parameters,

ei – measurement error.

If the measurement errors are small when compared to the geometric deviations

of the measured workpiece surface, the geometric deviation at each measurement point

might be calculated from the following dependence (3):

εi(t) = Xi − T (t)Ni(p), (3)

where:

εi(t) – geometric deviations in the machine coordinate system,

Ni(p) – the Xi measurement point projection on the N(p) nominal surface in the

machine coordinate system.

As already mentioned, in measurements performed in the CAD environment,

best-fit algorithms of coordinate measuring machines software carry out the operation

of fitting the measurement data to the nominal surface (CAD model), or:
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εi(p) = T−1(t)Xi − Ni(p), (4)

where:

T−1(t)Xi – measurement point coordinates in the workpiece system,

N i(p) – the T−1(t)Xi transformed point projection on the nominal surface,

ε j(p) – geometric deviation at the measurement point, determined in the workpiece

coordinate system.

Before determining geometric deviations it is necessary to establish the transfor-

mation matrix which is a function of a three-dimensional rotation and translation [4,6].

When applying the least square method to data fitting, the following function F should

be minimized:

F =

m
∑

i=1

εi(p)2
=

m
∑

i=1

∣

∣

∣T−1(t)Xi − Ni(p)
∣

∣

∣

2
, (5)

where:

m – the number of measurement points.

The fitting effect depends on each of the points selected to establish the trans-

formation matrix. Because of the presence of geometric deviations at each point,

different numbers and locations of points result in different fitting effects and thus

different locations of the workpiece coordinate system, which means they influence

the relations between the workpiece coordinate system and the machine coordinate

system (the transformation matrix). Consequently, different values of geometric devi-

ations at each measurement point are obtained for different sampling strategies. This

is illustrated in Fig. 1 which shows the outlines of geometric deviations of the milled

freeform surface for three different sets of data used to perform the process of fitting

the measurement data to the CAD model. As the result of surface scanning, coordinates

of 1500 measurement points were obtained. From the scanned data set, three sets of

points of different numbers and locations were selected. After having performed the

process of fitting these points to the CAD model, the surface geometric deviations were

determined. The differences in the deviations values and their distribution contours on

the surface are clearly visible.

Minimizing the F function, the T (t) transformation matrix between the workpiece

coordinate systems and the machine coordinate systems is determined according to the

dependence (5). This is a 4×4 matrix in the form [6,7]:

T (t) =
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a)

c)

Fig. 1. Contour graphs of geometric errors: a) before best fit, b) after best fit of 15 points, c) after best

fit 108 points, d) after best fit 1500 points.
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where:

T (t) – transformation matrix between the workpiece and the machine coordinate

systems,

t – transformation, rotation and translation parameters vector,

R – 3×3 rotation matrix, R(tα, tβ, tγ), tα, tβ, tγ axis rotation angles,
~P– translation vector between the origins, ~P =

[

tx, ty, tz
]T

.

The transformation matrix (6) is a combination of rotation and translation, and

in the general case it has six degrees of freedom; the transformation parameters set

(vector) can be described as t = [tx, ty, tz, tα, tβ, tγ]. For 3D axis-symmetrical surfaces

the number of parameters is smaller. For example, for a cylinder and a cone it amounts

to 5 (three translation vector components and two rotation vector components). In the

case of a 2D surface there are two translation components and one rotation angle.

In the specific case of a 2D circle (an axis-symmetrical shape), the transformation

parameters vector has two components (those of translation).

3. TRANSFORMATION PARAMETERS DISTRIBUTION

The location and orientation of the workpiece coordinate system in relation to

the machine coordinate system is described with the T (t) transformation matrix. The

workpiece coordinate system location is obtained after applying the procedure of fitting

the scanned measurement data to the nominal surface. Different sampling strategies

result in scattering of the workpiece coordinate system location and orientation and in

variability of transformation matrix parameters, or fitting uncertainty. Fitting uncertain-

ty is therefore inseparably connected with the values and distribution of the workpiece

processing errors as well as with the number of measurement points.

Surface geometric deviations are attributed to many factors. Different sources of

errors in the production process leave traces on the surface, and deviations are the

cumulative effect of the influence of these sources. Geometric deviations may be di-

vided into three components: shape deviations, waviness, and roughness. Components

connected with shape deviations and waviness are strongly correlated and are usually

deterministic in character. Surface roughness means irregularities of great frequency;

in the context of the distance between measurement points it might be assumed that

they are random in character. The share of random phenomena on a surface depends

on the machining type. Literature shows that after precision milling, values of random

geometric deviations of the surface are greater than those of deterministic deviations.

If random surface geometric deviations have normal distribution, for a big enough

number of measurement points assumed as the transformation base, it can be assumed

that the transformation parameters are random variables of normal distribution. In

a border situation, for an infinite number of measurement points, the expected values

of transformation parameters describing the location of the coordinate system of the
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specific measured surface will be obtained. Consequently, the distributions of transfor-

mation parameter deviations from the expected values are also normal (Chapter 5).

In the general case, the cumulative normal distribution of many variables has the

following form [8]:

f (x1, x2, ..., xn) =
1

√
(2π)n det[λ]

exp
[

−0.5 (x − µ)T λ−1 (x − µ)
]

, (7)

where:

λ – n×n covariance matrix,

x = [x1, ..., xn] – the independent random variables vector of normal distributions,

µ = [µ1, ..., µn]
T – the expected values vector.

For the case of analyzing the cumulative distribution f(∆ t) of the vector of trans-

formation parameters deviations centred around the expected values (∆ = 0), the above

dependence (7) can be illustrated as follows:

f (∆t) =
1

√
(2π)n det[λ]

exp
[

−0, 5 (∆t)T λ−1 (∆t)
]

, (8)

where:

λ – 6×6 covariance matrix,

∆t – the vector of transformation parameter deviations from their expected values.

Variability of the parameters deviations vector is connected with equal probability

(probability concentration) surfaces described by the equation (9)[8]:

(∆t)T λ−1 (∆t) = η2, (9)

where:

η – the constant dependent on the assumed probability.

These surfaces have the shapes of hyperellipsoids whose centres are determined

by the expected values vector [8]. The directions of the hyperellipsoid axes determine

eigen- (unit) vectors of the covariance matrix, and the squared lengths of the semi-axes

– the corresponding eigenvalues values of the covariance matrix.

The eigenvectors vectors and values of a covariance matrix might be obtained by

decomposing this matrix (10) (matrix properties allow for this) [8].

λ = UΛUT , (10)

where:

U – matrix whose columns are the covariance matrix eigenvectors

Λ – diagonal matrix of the covariance matrix eigenvalues.

The hyperellipsoid size is dependent on the assumed probability, and the constant

η value is determined from the chi-square distribution, in this case for six degrees of

freedom [8].
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The aim of the procedure is to determine the fitting uncertainty, or the scatter

limits of the ∆t transformation parameters deviation vector from the expected values

of these parameter vectors for a specific probability. The limits are in the shape of

hyperellipsoids contours whose centres are located in the point determined by the ex-

pected values vector; the workpiece coordinate system origin (transformation parameter

vector) will be found in the space limited by them with the assumed probability.

4. MEASURED SURFACE CHARACTERISTICS

The experiments were performed on a free form surface obtained in the milling

process using a ball-end mill 10 mm in diameter, rotational speed equal to 6000 rev/min,

working feed 720 mm/min and a zig-zag cutting path in the XY plane.

The surface was subsequently scanned with the UV method, 1500 (50 rows and

30 columns) uniformly distributed measurement points were scanned from the surface

(Fig. 2), and the process of fitting the data to the nominal surface was then carried out in

which the least square method was applied and all the measurement points were used.

Fig. 2. Measurement points distribution on the CAD model (CMM software).

Fig. 3. Plot of geometric deviations.
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Fig. 4. Geometric deviations probability distribution.

Geometric deviations of a free form surface, or normal deviations of measurement

points from the nominal surface, might be calculated after previously determining

the deviations components in the x,y,z directions [9]. Coordinate measuring machines

software automatically performs such calculations for each measurement point in the

UV scanning option.

The first stage consisted of making a detailed characteristics of the measured

surface which meant determining the values and character of the obtained deviations.

The surface was characterized by deviations whose plot is illustrated in Fig. 3, and

the standard deviation of the geometric deviations from the nominal surface amounted

to 0.032 mm. Fig. 4 shows the geometric deviation probability distribution. It can be

assumed that the deviations were of a quasi-random character.

5. DETERMINING FITTING UNCERTAINTY

In the next stage, groups of 50 measurement points were randomly selected out

of the scanned 1500 points fifty times in order to perform the fitting. 50 sets of

transformation parameter deviations from their expected values, or the values obtained

in the process of fitting on the basis of all the scanned points, were obtained. The

normalities of the transformation parameter deviation (dx,dy,dz,ax,ay,az) distributions

were checked graphically (Fig. 5).

Assuming the P=0.95 (η2
= χ2

0.95 (6) = 12.59) probability for the upper limit of the

possible scatter range of the coordinate transformation and P=0.5 (η2
= χ2

0.05 (6) = 1.63)

for the lower limit from the (9) dependence, the equal probability hyperellipsoids

limiting the (uncertainty) space were established. The computations and graphical
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Fig. 5. Probability distributions of transformation parameter deviations from the expected values.

illustration (Fig. 6) of the results were performed in the Matlab program. The as-

terisks represent the transformation vector deviations scatter. It can be observed that

the deviations of the transformation vector from their expected value, obtained in the

experiment, are in the space within the uncertainty contours.
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Fig. 6. Uncertainty contours and theirs projections on the coordinate system main planes.

6. CONCLUSION

In coordinate measurements, before determining the geometric deviations of a 3D

surface, the process of fitting the measurement data to the nominal surface (CAD

model) is performed. The transformation (rotation and translation) parameters describ-

ing the relation between the workpiece coordinate system and the machine coordinate

system are determined that way. The fitting effect is dependent on the number and

location of the measurement points because of the occurrence of geometric deviations

in producing particular surfaces in technology processes.

This paper presents the idea of fitting the measurement data to the CAD model

with the use of the least square method, as well as the idea of determining the uncer-

tainty contours on the assumption that the six transformation parameters are subject

to a cumulative normal probability distribution. These equal probability contours are

in the shape of hyperellipsoids determined from the cumulative normal distribution of

six transformation parameters for the assumed confidence level.

The theoretical issues were verified by the experiments carried out on a free form

surface obtained in the milling process and characterised by quasi-random geometric

deviations. Experimental values of the transformation parameter vector are located in

the space limited by theoretically determined uncertainty contours which were deter-

mined and presented graphically.
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