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Abstract 

In recent years a lot of effort has been put into testing and improving the idea of a three-beam interferometer 
known as Optical Vortex Interferometer (OVI). Devices based on the idea of an OVI allow, among other things, 
measuring small rotation angles of the wave [1]. In this paper complex statistical analysis has been used for the 
results of the small-angle rotation wave measuring method. The authors of this paper claim that the presented 
analysis of data handling error in a new measurement method increases the accuracy of the measured angle by 
better choice of random triplets. 
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1. Introduction 
 

Optical interferometry is one of the most interesting domains of optical measurement 
techniques. In this paper a new kind of interferometer – Optical Vortex Interferometer (OVI), 
is discussed. In the OVI three plane beams interfere to generate the regular lattice of Optical 
Vortex (OVs) [2]. The optical vortex (OV) is an isolated central point where the phase is 
undetermined and the intensity is zero – the OV is an example of interesting and unique type 
of such a marker. The OVs are more and more frequently used in new applications [3-7]. One 
of them is the Optical Vortex Interferometer used for the measurement of small angles of 
rotation [1,8]. To perform a single measurement, the method described in [9,10] requires four 
separate interferograms (A+B, A+C, B+C, A+B+C). One wave, for example C, can be 
deflected by a wedge, so the wavevector of the C wave is rotated. When one wave is 
deflected, the optical vortices change the position. All information about the object is 
obtained from the relative position of the vortex points in the regular lattice. In the past, other 
authors [8] used basic statistic methods to analyze the obtained results. This paper shows that 
the statistical analysis can be more precise. In the next section more information on the 
numerical algorithm for the small-angle rotation measurement will be presented.  
 
2. The numerical algorithm 
 

Jan Masajada [1] shows the idea of small-angle rotation measurement. In this paper we 
will show only the necessary steps to explain the need for the change of the statistical 
analysis.  

The optical wedge, put in one of the arms of the OVI, changes the coordinates of the 
wavevector kC of the size ∆kxC and ∆kyC [1]. Application of the Optical Vortex Interferometer 
to the measurement enables calculation of the components ∆kxC and ∆kyC from the following 
equations 
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To calculate the rotation angle, one needs to consider the relative position of the three 
vortex points. Fig. 1 shows two exemplary random triplets P1, P2, P3 and Pn1, Pn2, Pn3 
taken for the calculation. ∆x1 and ∆y1 are the differences in x and y coordinates between P2 
and P1 before the rotation (∆xn1, ∆yn1 are –  the differences in x and y coordinates between 
Pn2 and Pn1 after the rotation). Similarly, ∆x2 and ∆y2 are the differences in x and y 
coordinates between P3 and P1 before the rotation (∆xn2, ∆yn2 - the differences in x and y 
coordinates between Pn2 and Pn1 after the rotation).  

 

 
Fig. 1. The position of the vortex points as measured without the wedge (marker “+”) and with the wedge 

(marker “x”). PT1, PT2, PT3 determine the small triplet. Points P1, P2, P3 and Pn1, Pn2, Pn3 create random 
triplets. 

 
The wavevector kBC (kxBC, kyBC) is defined in the following way 
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These values (kxBC, kyBC) can be calculated from the following formulas 
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In this case the author [1] uses the geometry of the vortex points lattice. In this method the 
small vortex triplet (PT1, PT2, PT3 in Fig. 1) must be created from three nearest neighbouring 



points. The phase difference ∆ϕ between waves B and C changes by πϕ
3
2

13 =∆  ( while 

moving from point PT1 to PT3) and while moving from point PT1 to PT2 by to πϕ
3
2

12 =∆ . 

The symbols ∆x1, ∆x2, ∆y1, ∆y2 are the distances measured along the axes x and y between 
points PT2 and PT1 (∆x1, ∆y1) and PT3 and PT1 (∆x2, ∆y2).  

In the described algorithm, at first, the coordinates of the wavevector kC are calculated 
from all possible small triplets. Each small triplet contains three vortex points with the same 
geometrical configuration. Usually in a measurement it is possible to determine a few hundred 
small triplets in the analysed area. Then, step the mean value and the standard deviation is 
calculated. Due to huge number of choosing three points from more than a thousand only 
from a few thousand random triplets the values ∆kxC and ∆kyC (1) are evaluated. Not all 
possible vortex triplets are equally suitable for the calculations. For each accepted triplet the 
following condition must be fulfilled [1] 
 

              form1 = 2121 xnynynxn ∆⋅∆−∆⋅∆  or form2 = 2121 yxnxny ∆⋅∆−∆⋅∆ .      (4) 
 

Parameters form1 and form2 should be greater than a critical value (e.g. 2). The value is 
different for different experimental data. If these parameters are smaller than the value, the 
calculations will result errors or the distribution of the refracting angel of the wedge will not 
be symmetrical. This problem will be discussed further on. 

The described method can be used to determine the refracting angle γ of the wedge. When 
the wedge is rotated only around the axis x, the angel γ can be obtained from the following 
formula 
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where 
λ
π2

=k , 8,632=λ nm, n = 1,515. 

 
3. Analysis of the statistical error   
 

The problem with nonsymmetrical distribution of the refracting angel of the wedge was 
tested numerically. Firstly, perfect interferograms with one wave rotation were generated. The 
refracting angle of the wedge was calculated and the distribution of this angle was analysed. 
Secondly the imperfect interferograms were generated. Noise was added in the simulation. 
The parameters of the noise where determined appropriately to the experimental conditions. A 
lot of cases with different values of parameter form (4) were analysed. Exemplary results for 
the perfect end with noisy case below are presented.  

The parameter form1 or form2 (4) eliminates one kind of the triplets. Those triplets are 
created by collinear points. In Fig. 2 we can see a change in the calculated histograms of the 
wedge refracting angle with the use of different limits of the parameter form1 (for form 2 we 
can see the same histograms). In the numerical calculation 6000 random triplets have been 
chosen. For example, for the parameter form 1>1 we have about 4450 triplets (for the form 
1>3 we have about 2400 triplets, for the form 1>5 we have about 1050 triplets). The analysis 
of the histograms shows lack of symmetry in the distribution of the wedge refracting angle, so 



the mean value and the standard deviation are bad parameters to specify this distribution. It is 
not a Gaussian distribution. The authors searched other parameters to reject inconvenient 
triplets.   
 

 
 

Fig. 2. Calculated histogram of the wedge reflecting angle from the numerical interferograms: (a), (b), (c) - the 
ideal case, (d), (e), (f) - the noisy case; (a) and (d) - the parameter form1>1, (b) and (e) - the parameter form1>3, 

(c) and (f) - the parameter form1>5. The value of the calculated wedge refracting angle is 8 arcsec. 
 
We tested three parameters T, F and H. The results of exemplary calculation for those 

parameters are presented below. 
 
3.1 The parameter T 
 

With the aim of determining the first parameter T, a simple rule was used. It’s a well-
known fact that the sum of any two segments of a triangle is bigger than the third one. In the 
numerical test we used the following form 

 

                               a + b > c⋅T    and      b + c > a⋅T     and      a + c > b⋅T                              (6)        
 

where a, b, c are the sides of the triangle, T is a parameter. The value of T changes from 1.01 



to 1.30. Fig. 3 shows histograms of the wedge refracting angle calculated from the numerical 
interferograms.  
 

 
 

Fig. 3. Calculated histogram of the wedge refracting angle from the numerical interferograms: (a), (b) - the ideal 
case, (c), (d) - the noisy case; (a) and (c) - the parameter T=1.10, (b) and (d) - the parameter T=1.30. The value 

of the calculated  wedge refracting angle is 8 arcsec. 
 

The analysis of the results of the numerical test shows that the parameter T has to occur 
between 1.01 and 1.20. When the value of the parameter T is bigger than 1.20 then the 
distribution of the wedge refracting angle is nonsymmetrical. Fig. 3 shows selected 
histograms presenting the results of exemplary calculation for the perfect and noisy case, 
respectively. 
 
3.2 The parameter F 
 
The parameter F corresponds to the value of the field of the triangle made from three triplet 
points. The triangles with an insufficient value of the field were not considered for further 
calculation. In the numerical tests we applied the following formula 
 

                                                             Fieldmax⋅F < Fieldn,                                                       (7) 
 
where n=1,2…6000 triplets, the value of F changes from 0.01 to 0.40. 

Change of value of the parameter F affects the symmetry of histogram. Only for the 
parameter F included between 0.01 and 0.10 the symmetry of histograms is maintained. The 
results of the exemplary calculation for those parameters are presented below. 
 
 



 
 
 

 
 
Fig. 4. Calculated histogram of the wedge refracting angle from the numerical interferograms: (a), (b) - the ideal 
case, (c), (d) - the noisy case; (a) and (c) - the parameter F=0.10, (b) and (d) - the parameter F=0.30. The value of 

the calculated wedge refracting angle is 8 arcsec. 
 
 
3.3 The parameter H 
 

The parameter H determines the value of the triangle height created by three random 
vortex points. In the numerical test we use the following form 
 

                       ha > hamax⋅H  and   hb > hbmax⋅H   and  hc > hcmax⋅H,        (8)    
                 
where, the value of H changes from 0.01 to 0.40. 

Fig. 5 shows selected histograms of the calculated wedge refracting angle values from the 
numerical interferograms. Every change in value of the discussed parameter affects the 
symmetry of distribution of the wedge refracting angle. 



 
 

Fig. 5. Calculated histogram of the wedge refracting angle from the numerical interferograms: (a), (b) - the ideal 
case, (c), (d) - the noisy case; (a) and (c) - the parameter H=0,10, (b) and (d) - the parameter H=0.20. The value 

of the calculated wedge refracting angle is 8 arcsec. 
 
 
4. The experiment 
 

The last step was to apply the procedure described above to the interferograms obtained 
from the experiment. The mean value of the wedge reflecting angle measured with the auto 
collimation method was 6 ± 2 arcsec. We used different parameters, described above, for the 
calculation. Symmetric distribution for the probability density function was observed for the 
following parameters: T ∈ <1.05, 1.20> and F ∈ <0.05, 0.20>. Then the mean value µ and 
standard deviation σ2 were calculated from the experimental data. Fig. 6a shows the Gaussian 
distribution (solid line) plotted from those calculation parameters µ and σ2. Fig. 6b we can see 
another diagram (solid line) with modified parameters of the Gaussian distribution. The 
standard deviation in the second diagram (Fig. 6b) is smaller than the standard deviation in 
the first graph of the Gaussian distribution. The parameters of the normal distribution 
automatically calculated from the experimental data describe the real situation inaccurately.  

The Cauchy-Lorentz distribution described the experimental data better than the Gaussian 
distribution. Two parameters were used for describing the Cauchy-Lorentz distribution: x0 is 
the location parameter specifying the location of the peak of the distribution, and γ is the scale 
parameter specifying the half-width at half-maximum. Fig. 6 shows the Cauchy-Lorentz 
distribution (broken line) plotted from the experimental data. The results of measurement 
parameters of the wedge refracting angle with the Optical Vortices Interferometer should be 
described by the parameters of the Cauchy-Lorentz distribution. Instead of the mean value, 
the modal value was used. For the experimental data the mean value and the modal value are 
the same. In case when the obtained distribution was nonsymmetrical the mean value was 



incorrect. In this case the modal value should be used to determine the value of the tested 
object angle. 

 

 
 

Fig. 6. Probability density function of the wedge refracting angle from the experiment. The parameter T=1.1. 
Broken line - the Cauchy-Lorentz distribution (x0 = 5.99, γ = 1.8), solid line - the Gaussian distribution - N(µ, 
σ2). (a) N(5.99, 3.1) - the calculated parameters µ and σ2, (b) N(5.99,2.25) - the matched parameters µ and σ2. 

 
 
5. Conclusions 
 

This paper presents a precise analysis of data handling error in a new measurement 
method. A new kind of interferometer OVI is used for small-angle rotation measurement. In 
the described method the knowledge of the small-angle rotation of the inspected wave allows 
the calculation of the wedge refracting angle. During calculation the parameter which 
eliminates one kind of the triplets created by collinear points has been used. Improper choice 
of these parameters results in a nonsymmetric distribution of the probability density function 
and subsequently in incorrect measured values of the investigated objects. In this paper the 
authors present a different way of defining parameters to be used for calculations. Moreover, 
this paper shows that the result of measurement of the wedge refracting angle with the Optical 
Vortex Interferometer should be described by the Cauchy-Lorentz distribution. The standard 
deviation is bigger than the scale parameter specifying the half-width at half-maximum of the 
Cauchy-Lorentz distribution. In the selected case the value of the standard deviation is 3.1 
arcsec and the value of γ = 1.8 arcsec. The standard deviation used for describing the accuracy 
of the measurement is misleading.  
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