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Abstract 

The correlation of data contained in a series of signal sample values makes the estimation of the statistical 
characteristics describing such a random sample difficult. The positive correlation of data increases the 
arithmetic mean variance in relation to the series of uncorrelated results. If the normalized autocorrelation
function of the positively correlated observations and their variance are known, then the effect of the correlation 
can be taken into consideration in the estimation process computationally. A significant hindrance to the
assessment of the estimation process appears when the autocorrelation function is unknown. This study 
describes an application of the conditional averaging of the positively correlated data with the Gaussian
distribution for the assessment of the correlation of an observation series, and the determination of the standard 
uncertainty of the arithmetic mean.  The method presented here can be particularly useful for high values of 
correlation (when the value of the normalized autocorrelation function is higher than 0.5), and for the number of
data higher than 50. In the paper the results of theoretical research are presented, as well as those of the selected
experiments of the processing and analysis of physical signals. 
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1. Introduction 

 
In the digital methods of  calculations of random signal characteristics or those determined 

and interfered with random impact occurrences, the accuracy of the estimates of the 
parameters being calculated depends on the number of data (of quantizated signal samples). 
Within the given analysis time an increase of the data number makes lower the component of 
the estimator variance which is data number dependent, and at the same time it increases the 
variance component dependent upon the higher correlation of the samples from the location 
situated in smaller distance (in time, impact terms, and so on).  

The correlation of measurement data in n series of measurement results makes the 
estimation of the statistical characteristics describing such a random sample difficult. The 
positive data correlation increases the variance of the arithmetic mean in relation to the series 
of uncorrelated results. If the normalized autocorrelation function of the observations is 
correlated positively and their variance is known then the impact of the correlation can be 
taken into consideration in the process of the estimation of the arithmetic mean variance in a 
computational manner. A significant hindrance to the assessment of the accuracy estimation 
process appears when the data variances and their autocorrelation function are unknown, since 
for the autocorrelation function with the relevant fragments of negative values the data 
correlation may decrease the variance of the arithmetic mean.  The basic theoretical solutions 
of this problem are presented in literature, e.g. [1-2].  

Due to the expanding range of the use of measuring data processing and the possibility of 
the use of new instruments and procedures, the problem of the assessment of the accuracy of 
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the experimental determination of statistical characteristics (particularly the arithmetic mean) 
of correlated data was and still remains topical [3-16]. 

In this study the application of the conditional averaging of the correlated data with the 
normal distribution for the determination of the standard uncertainty of the arithmetic mean 
has been proposed. The results of theoretical research and the selected analysis experiments of 
physical signals have also been presented. 

 
2. Assessment of the standard uncertainty of the arithmetic mean of correlated data 
 

When compiling measurement data it is normally assumed that the observations taken with 
a sample interval Δt from the population (of a x(t) signal) with the distribution ( )xx ,N σμ  create 
a n-element random time series (1) which meets the stationary and ergodicity conditions: 
 

 ( ) ( ) ( ) ( )tnxtixtxtx ni ΔΔΔΔ ,...,,...,2, 21 . (1) 
 

The commonly used estimator of the expected value xμ  determined on the basis of the data 
series (1) is the arithmetic mean calculated from the formula: 
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If the 2
xσ  observation variance is not known then it can be assessed with the unbiased 

variance estimate: 
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When there is no data correlation then the standard uncertainty of the arithmetic mean can 
be calculated from the equation: 
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n

sxu x
A = . (4) 

 

At the correlation of n data described with the normalized autocorrelation function 
( )tkk Δρρ =  the equivalents of the expressions (3) and (4) will have the form [3-4]: 

  

 22 1
1 x

e

e
xk s

n
n

n
ns −

⋅
−

= , (5) 

 

and: ( )

1
1

−
−

==

n
nn

s
n

sxu
e

x

e

xk
Ak , (6) 

 

where: ( )ρλρ ,121
1

1

n
n

n
k

nn n

k
k

e =
⎟
⎠
⎞

⎜
⎝
⎛ −+

=

∑
−

=

  (7) 

 

is the effective (equivalent) number of the uncorrelated observations providing the same 
uncertainty as for n − correlated observations.  

In the circumstances when the normalized autocorrelation function kρ  of data is positive 
for any k values, then the coefficient ( ) 1>ρλ ,n , and this means that the positive data 
correlation decreases the accuracy of the estimation of the expected value. 

For the n-element measurement data series described with the autocorrelation functions of 
exponential form according to the model: 
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xx tkR 1
2ρσ=Δ ,  ,...2,1,0=k , (8) 

 

where: 1ρ  − correlation between the adjacent values of the data series, the coefficient ( )1, ρλ n  
can be presented by expression [1]: 
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At the limit when ∞→n : 
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and the number of uncorrelated observations: 
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Substitution of the value λ with λ1 in calculations means that the formula (7) is simplified 
to the form: 
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The error rate caused by this replacement is in percent: 
 

 1001

λ
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Figure 1 below shows the relationship between the error rate λδ  and the function n for the 
value 1ρ = 0.2 and 1ρ = 0.8. 
 

 
 

Fig. 1. Graph of the relationship δλ = f(n,ρ1). 
 

From Fig. 1 it can be seen that for high values of the correlation of adjacent elements of the 
data series the simplification of the relationship (9) to the form of (10) is burdened with a high 
error λδ  for low values of n. For the condition when λδ < 10% the number of results in the 
data series should not be less than 50. 
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3. Application of the conditional averaging for the assessment of standard uncertainty of    
the arithmetic mean 
 
To calculate the uncertainty ( )xuAk  with the use of conditional averaging of the random 

data time series with Gaussian distribution the following procedure can be applied: 
1. Calculation of the estimate x  (from the formula 2). 
2. Calculation of the estimate xs  (from the formula 3). 
3. Centering of the ix data series and obtaining of the ix  series as iii xxx −= .  
4. Calculation (on the basis of the ix series) of the estimate 1wx  of the conditional values of 

the arithmetic mean: 
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where: px  – threshold value, M – number of averages. 
The threshold px  should be selected for the condition [17-18]: 

 

 xp sx ⋅=ν , (15) 
 

where: ν – coefficient dependent on the assumed method of averaging. 
5. After substitution of  (14) and (15) to  (11) and then to (5) and (6), new relationships for *

en , 
*

xs2  and *
Au  are obtained:  
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For n >>1 the last expression can be simplified and reduced to the form: 
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If 0≠x , then: 
 

 ( )xxxx pw −+= 11 ρ  (20) 
 

and the number of the uncorrelated observation will be: 
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In order to assess the degree of the correlation of the subsequently averaged signal 
fragments exceeding the set level px , the ratio pxkm / ττ  can be used (where kmτ  is the 

maximum signal correlation interval and pxτ  is the average interval between the passes of  

px ). It can be shown that for the model considered in this study of data correlation the 

subsequent passes of the level xpx σ⋅= 2  are practically uncorrelated.  
 The relative uncertainty 

1wxδ of estimate 1wx  is determined by the ratio of standard 

uncertainty M/)(xxw

2
11

1
ρσσ −= of conditional arithmetic mean M for the values of 

uncorrelated realizations to the conditional expected value 11 ρpw xx = of the analyzed 
realizations. 

The quality of estimate 1wx , with specified length of the analyzed time series on the one 
hand requires a possibly large number M of conditionally averaged fragments of the time 
series in order to reduce the variance of the conditional arithmetic mean and to adequately 
decrease  threshold px . On the other hand, the quality of averaging requires possibly large 
averaged values and an adequately high value of estimate 1wx , which requires opposite action 
and increased threshold px . A compromise and optimum value of threshold px , which can be 
obtained from the  minimum condition 

1wxδ , depends on the algorithm for determining 1wx  and 
is found in the range ( ) xs0.24.1 ÷ .  
 For 0=x and with lack of correlation of the signal realizations M  subsequently averaged, 
the expression determining the relative uncertainty of the conditional assessment of the signal 
arithmetic mean 1wx  can be depicted with the equation: 
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The graph of the relationship )( 11
ρδ f

wx =  for 2=ν  and 100=M  is shown in Fig. 2.  

For 5,01 ≥ρ  the value 
1wxδ  does not exceed 2 percent. 

 

 

Fig. 2. The graph of the relationship )( 11
ρδ f

wx =  for 2=ν  and 100=M . 
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4. Experimental studies 
 

In the experiment the stationary random signal x(t) of the ( )xxN σμ ,  distribution and 
exponential autocorrelation function was analyzed. The examined signal was obtained via 
processing of the output signal of a physical white noise generator within the band set  
for 0 − 25 kHz by the use of the inertial system of the first order with the time-constant 

410−=RC s. The first stage of the data analysis was the determination of the conditional 
estimate of the mean value 1wx  with the use of the general relationship ( )tkxw Δ . This estimate 
was determined with the use of the RIGOL DS1062C digital oscilloscope for the threshold 

( )2V12.1 == νpx   and the number of averaging steps M = 256. The examples of records in 
the analyzed signal realizations x(iΔtp) for three sampling intervals: s501 μ=Δ pt , 

s1002 μ=Δ pt  and s2003 μ=Δ pt , along with the graph of the conditional function of the mean 
value ( )1f pw tkx Δ=  are shown in Fig. 3. 
 
                                                     a)                                                                             

    
 

                                           b) 

  
 

Fig. 3. Experimental characteristics: a) fragments of signal realizations x(iΔtp) from sampling intervals Δtp equal 
subsequently to: Δtp1 = 50 μs, Δtp2 = 100 μs , and Δtp3 = 200 μs; b) function of the conditional mean 

value of the analyzed signal ( )1f pw tkx Δ= . 
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In the second stage of the experiment carried out with a computer system, the mean value 
073.0ˆ =xμ V and the variance 22 V312.0=xσ  of the signal ( )tx  have been determined for long 

time observations ( s1000 =T ). Then, 100 short realizations have been analyzed which 
included 200 signal samples taken with the sampling interval st p μΔ 501 = . For each realization 
the arithmetic mean jx  and the variance 2

jxs  were determined. Then the following 

experimental values have been determined: the arithmetic mean 1ˆ xμ  of the estimates jx , the 

signal variance 2
1xs , and the arithmetic mean variance 2

1ˆx
sμ  (see the first column in Table 1). 

The experiment has been repeated 10 times (g = 10) for subsequent, different short 100-
element realizations. On the basis of the statistics calculated in 10 repetitions (Table 1) the 
general arithmetic mean has been determined using the formula: 
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and the general variance of the estimate of the arithmetic mean by using the formula: 
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Table 1. The list of the calculation results. 
 

     g 
Param. 

1 2 3 4 5 6 7 8 9 10 Gen. 
param 

xgμ̂ , V 0.0654 0.0854 0.0807 0.0761 0.0736 0.0787 0.0733 0.0719 0.0647 0.0595 xμ̂  
0.0729

2
xgs , V2 0.3046 0.3069 0.3058 0,3103 0.3201 0.3074 0.3121 0.3109 0.3078 0.3061 

2
xŝ  

0.3092
2
ˆ xg

sμ , V2 
0.0056 0.0064 0.0084 0.0057 0.0077 0.0072 0.0060 0.0098 0.0066 0.0066 

2
ˆ x

sμ  
0.0070

 
The standard uncertainty is: 

 084.00071,02
ˆˆ ≈==
xx

ss μμ  V.    (25) 
 

With the use of the data conditional averaging, the effective number *
en  of samples for 

s501 μ=Δ pt  has been calculated on the basis of data, according to Fig. 3b, by using the 
formula (21): 

 44
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Next, the standard uncertainty of the arithmetic mean has been determined by the use of the 
formula: 
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The signal analysis described herein has been made subsequently for longer sampling 
intervals s1002 μ=Δ pt  and s2003 μ=Δ pt , and the 0035.02

ˆ =
x

sμ V2 as well as 0018.02
ˆ =
x

sμ  V2 

values were obtained, respectively. The obtained experimental results 2
ˆ xg

sμ  and 2
ˆ x

sμ  of the 

assessment of the arithmetic mean variance are shown in Fig. 4. The graphs presented in Fig. 4 
illustrate the decrease of the value of the arithmetic mean variance estimates at longer 
sampling intervals and lower correlation of the data correlated positively. The decrease of the 
variances of the variance estimates at the lowering of data correlation is also clear. 

The standard uncertainty values determined on the basis of the comparative principles  
(e.g. the relationships (25) and (26)) for different sampling intervals and various data 
correlation levels are shown in Table 2. 

On the basis of the presented result it can be stated that for relatively large data sets, for 
practical purposes there is sufficient conformity of the value of the standard uncertainty 
assessment with the use of the conditional mean   and the classic method of the estimation of 
the standard deviation. 

 

 
Fig. 4. Experimental values of the arithmetic mean variance. 

 
 

Table 2. Experimental results of data analysis. 
 

Standard uncertainty values for arithmetic mean [V] 
Assessment of the standard uncertainty 

1ptΔ  2ptΔ  3ptΔ  

*
Aku [V] – determined from the formulas (21) 

and (19) 

0.084 

( *
en = 44) 

0.057 

( *
en = 96) 

0.043 

( *
en = 169) 

xˆsμ [V] – determined by experiment 0.084 0.059 0.043 

 
5. Conclusion 

 
For the assessment of the correlation of the measurement data series and the standard 

uncertainty of the correlated data arithmetic mean of the Gaussian distribution, conditional 
data averaging can be used. The method proposed herein can be particularly useful for high 
correlation values ( >1ρ 0.5), and relatively high values of n (n > 50). 
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For the time series of data of limited length (i.e. low n value) the values 1wx  of the estimate 
on the basis of formula (14) may not be stable in time (like the estimates of the autocorrelation 
function) because of the small number of occurring and conditionally averaged realizations. 

The conditional averaging presented in this study for the basic model loses its advantages 
with regard to the assessment of correlation for insufficiently correlated data ( <1ρ 0.1) due to 
the significant increase of the value of 

1wxδ . In such circumstances a beneficial solution may 
be given by the use of the modified algorithms of conditional averaging of measurement  
data [19]. 
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