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Abstract 

Digital photoelasticity is an important optical metrology follow-up for stress and strain analysis using full-field 

digital photographic images. Advances in digital image processing, data acquisition, procedures for pattern 

recognition and storage capacity enable the use of the computer-aided technique in automation and facilitate 

improvement of the digital photoelastic technique. The objective of this research is to find new equations for a 

novel phase-shifting method in digital photoelasticity. Some innovations are proposed. In terms of phase-

shifting, only the analyzer is rotated, and the other equations are deduced by applying a new numerical technique 

instead of the usual algebraic techniques. This approach can be used to calculate a larger sequence of images. 

Each image represents a pattern and a measurement of the stresses present in the object. A decrease in the mean 

errors was obtained by increasing the number of observations. A reduction in the difference between the 

theoretical and experimental values of stresses was obtained by increasing the number of images in the equations 

for calculating phase. Every photographic image has errors and random noise, but the uncertainties due to these 

effects can be reduced with a larger number of observations. The proposed method with many images and high 

accuracy is a good alternative to the photoelastic techniques. 
 

Keywords: photoelasticity, metrology, stress analysis, strain measurement, optical measurement systems, optical 

interferometry, experimental techniques. 
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1. Introduction 
 

Photoelasticity is one of the oldest methods for experimental stress analysis, but it has been 
overshadowed by the Finite Element Method for engineering applications over the past two to 

three decades. However, certain new and novel developments and applications have revived 
the use of photoelasticity. The new approach involves the use of hybrid methods in which the 

advantages of both experimental and numerical methods are exploited. Nevertheless, recent 
industrial needs, such as continuous on-line monitoring of structures, determination of the 
residual stresses in glass (plastics) and microelectronics materials, rapid prototype production 

and dynamic visualization of stress waves, have brought photoelasticity into the limelight 
once again [1]. 

 The current trend of digitally imaging photoelastic fringe patterns indicates that image 
processing can be used to delineate the required information from the fringe patterns. The 
phase-shifting method has the most potential, particularly with respect to fringe sign 

determination. The method of photoelasticity makes it possible to obtain the principal stress 
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directions and principal stress differences in a model. The principal stress directions and the 

principal stress differences are provided by isoclinics and isochromatics, respectively [2]. 
Isoclinics are the loci of the points in the specimen along which the principal stresses lie in the 
same direction. Isochromatics are the loci of the points along which the difference in the first 

and second principal stress remains the same. Thus, they are the lines that join the points with 
equal maximum shear stress magnitudes [3]. 

The fringe patterns are nothing but the record of the phase difference between light 
travelling in two different optical paths as intensity variations. By varying the phase 
difference between the beams involved, in known steps, it is possible to generate a sufficient 

number of equations to solve the parameters involved. In general, phase differences can be 
added by altering the optical path length of any one of the light beams. Usually, the phase of 

the reference light beam is altered in known steps. Photoelasticity falls into a special category, 
in that the two light beams cannot be treated separately, but rather always go together [4]. 
This means a phase shift introduced in one light beam will also introduce a corresponding 

phase shift in the other beam. This change in phase, in practice, is achieved by appropriately 
rotating the optical elements of the polariscope. A detailed study of the intensity of the light 

transmitted can help in relating the rotation of the optical elements to the change in phase 
introduced [5]. 

The significant advantage of the methodology proposed in this paper is that the method 

only changes the angle of the analyzer in the polariscope and that one can obtain equations for 
calculating the phase for any number of images in various situations. A clearer physical 

reason for the proposed numerical model is that the measurement uncertainty can be reduced 
by increasing the number of observations. Measurement uncertainty is a parameter 
characterizing the dispersion of the values attributed to a measured quantity. No measurement 

is exact. The uncertainty has a probabilistic basis and reflects incomplete knowledge of the 
quantity. All measurements are subject to uncertainty and a measured value is only complete 

if it is accompanied by a statement of the associated uncertainty. The new method can be used 
with any number of photographic images or photoelastic measures in a plane or circular 

polariscope [6].  
 

2. Phase-shifting methods of analysis 

 
The optical arrangement to recognize and to identify isoclinics and isochromatics from 

photoelastic fringes is a circular polariscope set-up, shown in Fig. 1. In Fig. 1, P, Q, R, and A 
represent the polarizer, quarter-wave plate, retarder (stressed model) and analyzer, 
respectively. The orientation of the element is written by a subscript, which means the angle 

between the polarizing axis and the horizontal x axis. Rα,δ represents the stressed sample taken 

as a retardation δ and whose fast axis is at an angle α with the x axis [7]. Therefore, 

P90Q45Rα,δ Q-45Aθ, indicates the following: a polarizer at 90°, a quarter-wave plate with a fast 

axis at 45°, a specimen as retardation δ whose fast axis is at an angle α with the x axis, a 

quarter-wave plate with a fast axis at ‒45°, and an analyzer at θ. With the Jones calculus [8] 

for the arrangement of P90Q45Rα,δ Q-45Aθ shown in Fig. 1, the components of the electric field 
in light along and perpendicular to the analyzer axis (Ex, Ey) are given as: 
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Fig. 1. Optical arrangement of a circular polariscope (180º = π radians). In the figure we have a 

coordinate system where the x axis is horizontal and the vertical is the y-axis. 

 

The angles θ and ϕ = ‒45º are those that the analyzer and the second quarter-wave plate 

form with the reference x axis, respectively. The symbols k and ω are the amplitude and the 

angular frequency of the light vector, respectively. 

 yyxx
EEEEI

**
+= .  (2) 

In (2), I is the output light intensity, and * *
 and 

x y
E E  are the complex conjugates of Ex and 

Ey, respectively. After the simple operation of (1) by (2), the output intensity of the circular 

polariscope for the arrangement P90Q45Rα,δ Q-45Aθ is given by: 

 ( ) ( ) ( ) ( ) ( )1 cos 2 cos cos 2 sin 2 sinI K θ δ α θ δ= − −   , (3) 

where K is a proportional constant, i.e., the maximum light intensity emerging from the 

analyzer. These angle values are chosen to simplify the calibration of the polariscope used in 

the experimental measurements. For the phase measuring technique, the angle α and the 

relative retardation δ indicating the direction and the difference of principal stresses, 
respectively, are the parameters to be obtained. 
 

 
Fig. 2. Sample under compression. 

 

In the experiments, Fig. 2, the diameter and the thickness of the disk used are: D = 10.0 cm 
and H = 0.5 cm, respectively. A diametrical compression load, P = 50.0 N, is applied to the 

disk. The material fringe constant F = 900.00 N/m is used. From the given conditions, the 

theoretical value of isochromatic δ is related to two principal stress components, σ1 and σ2, 
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as in (4). In contrast, the theoretical isocline angle α can be calculated by (4) using stress 

components σx, σy, and τxy.  
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In the literature on the theory of elasticity [9‒10], the exact value of the stress field, as a 
function of x and y with its origin at the center of the disc, is given by (the superscript “e” 

indicates the exact, analytical values): 
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For comparison with the experimentally measured values, the following are used: 
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Then, with (9), the exact values of δ e and α e can be calculated for each point of the x and y 
coordinates in the same manner as in (4): 
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The idea is to compare these exact results (δ e and α e) obtained theoretically in the analysis 
of stress with experimental measurements of light intensities using the proposed method 

(δ and α). 
 

3. �ew mathematical model  

 

By analogy with the equations of phase calculation used by other authors and the 
mathematical model proposed in [11], we had the idea to try a new general model for the 
equations of phase in photoelasticity. After many different attempts, a general equation for 

calculating the phase for any number, �, of images is proposed: 
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where � is the number of images, br,s and er,s are coefficients of the numerator, cr,s and fr,s are 

coefficients of the denominator, and r and s are the indices of the sum [11].  
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The use of the absolute value in the numerator and the denominator restricts the angle 

between 0 and π/2 radians but avoids negative roots and also eliminates false angles. 

Subsequent considerations will later remove this restriction. 
The shift from obtaining equations for calculating the phase analytically to obtaining them 

numerically is a significant innovation. It breaks a paradigm that was hitherto used by several 

authors. After several attempts at numerical modeling of the problem, the following 
mathematical problem was identified (11): 
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The motivation for choosing this mathematical model is the success achieved in [11] with a 
similar model. The idea of the mathematical model is to maximize the coefficients (br,s, cr,s, 

er,s, fr,s) so that their values are large enough (not close to zero) to make them significant in the 
equation obtained. Step represents integer values greater than or equal to 3. � is the number of 

images, and it is an integer number between 3 and the value of Step. 
The constraints 1 and 2 are made so that the coefficients (br,s, cr,s, er,s, fr,s) generate correct 

values for the calculation of α and δ. To ensure that one has a hyperrestricted problem, it is 
suggested that the number of greater restrictions must be at least equal to the number of 

variables. The constraints 3 and 4 are placed on the coefficients (br,s, cr,s, er,s, fr,s) that are not 
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greater than one and are not smaller than minus one, to avoid error propagation. For the needs 

of phase evaluation, these limiting factors will increase the values of the intensity of the 
observations (I) that contains errors due to noise in the observations and excellent 
discretization in pixels and in shades of gray. 

The ν restrictions in the model are obtained by a random choice of values for K (constant 

proportion of the maximum intensity of light emerging from the analyzer), δ (delay in the 

model given by the photoelastic isochromatic fringes) and α (angle between the direction and 

the axis of horizontal reference σ1). In fact, the values of K, δ, and α can be any real number, 
but to maintain compatibility with the problem, we chose to limit K between 0 and 255 so that 

the values of I are between 0 and 255. In addition, α is limited between 0 and π/4 radians and 

δ between 0 and π/2 radians so that the tangents have positive values. 

The angle θ is limited to ‒π/4 and π/4 radians and is equally spaced when Step = �. For 

other values of Step, the angle θ starts with a value of ‒π/4 and is equally spaced, but it does 

not reach π/4. The choice of these angles is based on the ease of calibration in the polariscope 

used. Other values for the angles can be used in the mathematical model. 
Step must to be an integer number. The number of images (�) should range from 3 to the 

value of Step. Step is used to vary the angle with constant spacing in the polariscope analyzer. 

For example, for 8 images (� = 8) and Step=10, the angles of the analyzer polariscope (θ) are 
as follows: ‒45º, ‒35º, ‒25º, ‒15º, ‒5º, 5º, 15º, and 25º. 

The mathematical model is easy to solve because it involves linear programming and a 
maximum global solution can be obtained using the Simplex method. The processing time for 

the solution of this mathematical model is very fast, a few seconds on personal computers. 

For example, when � = 3 and Step = 3, the angles of the polariscope analyzer (θ) are ‒45º, 
0º, and 45º. The equations obtained with the mathematical model are shown in (12). 
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 In another different example, when � = 6 and Step = 6, the angles of the polariscope 

analyzer (θ) are ‒45º, ‒27º, ‒9º, 9º, 27º, and 45º. Here the differences are in coefficients be 

integers instead of real, this was done by changing the mathematical model for integer 
programming. The equations obtained with the mathematical model are shown in (13).  
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Thus, for each value of Step greater than or equal to 3 and � between 3 and the value of 

Step, the mathematical model (11) provides values of the real coefficients (br,s, cr,s, er,s, fr,s), 

which represents an unprecedented and new phase equation for α and δ. 
Because the new equations were developed from the algorithms, a numerical calculation, 

rather than an analytical demonstration of trigonometric relations, is necessary to check them. 

It is believed that a large number of numerical tests can validate or verify these new equations 
or at least minimize the chance of these equations being wrong or false. To test the usefulness 

of the new equations for calculating the phase, a computer program was created that generated 

random values of K∈[0, 255], α’∈[0, π/4], and δ’∈[0, π/2]. Using (3), the program calculates 

� values of Ij, one for each value of θj. With the values of Ij, the new phase equations were 

applied and tested to determine whether they produced the correct values of α and δ. The 
values of Ij (luminous intensity of the image) are calculated with j ranging from 1 to �. The 

new equations with the values of Ij are applied, giving a tan (α) and a tan (δ) that must be 

compared with the value of randomly assigned (α’ and δ’) values. This comparison involves 
the accuracy of a very small value because of the number of rounding errors that can occur in 

the calculations, that is, the precision (|α’ ‒ α|+|δ’ − δ|)≤10
-6

. This calculation was performed 
thousands of times (at least 100.000 times) for each equation in the phase calculation. It was 
generated in at least 99.999% of the time with an accuracy of 10-6. The mathematical model 

of (11) was successfully tested until Step and � equal 1801, the value at which the increment 

∆θ would be 0.05º. Thus, it was believed that the chances for the equations to be wrong or 
false have been minimized. 

 

4. Before unwrapping, change to [‒π, π] 

 

Because of the character of the evaluation equations, only phase values α ∈ [0, π/4] and δ 

∈ [0, π/2] radians were calculated. For unequivocal determination of the wrapped phase value 

angles ∈ [‒π, π] it was necessary to test values δ, ‒δ, δ ‒π, and ‒δ +π by combining them 

with α, ‒α, α ‒π, and ‒α +π using values of Ij and small systems in (14):  
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
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222

111

δθαδθ

δθαδθ

δθαδθ

���
KI

KI

KI

 (14) 

The values were tested based on the symmetries of the tangent function. Sixteen tests are 

performed, and the correct values of α and δ are sought between ‒π and π because the 

experimental values Ij and θj are known [12]. 

We obtain α and δ between [‒π, π]. The next step is to unwrap the phase map. When 

unwrapping, several of the phase values should be shifted by an integer multiple of 2π. 

Unwrapping is thus adding or subtracting 2π offsets at each discontinuity encountered in the 

phase data. The unwrapping procedure consists of finding the correct field number for each 
phase measurement [13‒14]. 

Once obtained the value of α and δ unwrapping, applies digital implementation of the 
shear difference technique for whole field stress separation of 2-D problems of any geometry 

shown in [15‒17]. Thus, it calculates the values of the phase maps, principal tensions (σ1, σ2) 

and normal (σx, σy) and shear (τxy) stresses. The von Mises stress or equivalent tensile stress 

(συ), a scalar stress value that can be computed, too. Thereafter, graphical displays of tensions 

in the object under study are shown. 
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5. Testing and analysis of error 

 
To assess the practical use of the method developed in this work, a stress disk under 

diametric compression, D = 100.0 mm in diameter, H = 5.0 mm thick and made of epoxy, is 

used. The pixel numbers, which are used for digitization, are 1024 × 1024. The grey level of 

each pixel ranges from 0 to 255. The light source used in this experiment is white light from a 
sodium lamp.  

To test the new equations for the phase calculation, they were used with the technique of 
photoelasticity for an object with known stress and to evaluate the average error using (15): 

1

1
Average Error for    ( ) ,

M

e

i i

i

E
M

α
α α α

=

= −∑
1

1
Average Error for    ( )

M

e

i i

i

E
M

δ
δ δ δ

=

= −∑ , (15) 

where M is the number of pixels of the image and αi
e
 and δi

e
 are the exact value calculated by 

(6–12) for the disk. The values of αi and δi are calculated by the new equation. In the analysis 
of the error, only the zones within the photos that were unambiguous and contained no 

inconsistencies were considered [18‒20]. Fig. 4 show the results obtained with the application 
of the new phase calculation equations.  

 This process was started with three images, repeated with four, then five and so on. The 
idea was to show that with an increasing number of images, the average error tends to 
decrease. Fig. 3 shows an example of this procedure. 

 

 
 

Fig. 3. Set with 6 images, ∆θ equal to 18°, the disk is under compression. 

 
To compare the new equations for calculating the phase, nine sets of photos with Step set 

to 3, 4, 6, 7, 10, 11, 16, 19, and 31 were generated. In each set, the angle θ of the analyzer is 

varied (∆θ): 45º, 30º, 18º, 15º, 10º, 9º, 6º, 5º, and 3º, respectively. Each set was computed 

using the average error of 3 to the number of Step images and using equations to evaluate the 

angles α and δ. Fig. 5 and Fig. 6 show that the average error decreases when the number of 
images increases. It may be noted that for a number of images, the average error increases 

when the variation of the angle θ between the images decreases. 
It is important to note that for each equation developed, the average errors found for the 

angle δ are larger than the errors found for the angle α of the fringes isoclines. It is believed 

that this occurs because the absolute values of δ are higher than the absolute values of α. 
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To compare the equations with the equations deduced by other authors, the equations were 

applied to the analysis of error in the algorithm of Patterson and Wang [21]. Values of 

Eα = 2104×10
−6

 rad and Eδ = 5312×10
‒6

 rad were obtained. 
For the Patterson and Wang algorithm with six images, the average error is less than six 

images using the new equations. It is believed that the major distinction between the pictures 

of the phase shifts is the reason why this improved result is obtained. However, to obtain 
these images, it is necessary to rotate the analyzer and the second plate of the polariscope by a 

quarter wave. 
The average error of the algorithm of Wang and Patterson with 6 images is in the range of 

the average error found for 11 images using the new equations, but for more than 16 images, 

lower average errors for the newly developed equations can be observed, indicating than 
a larger number of images yielded smaller errors. Similar results were obtained with the 

algorithms proposed by other authors in [22‒26]. 
More experiments were performed with other values of load (P), diameter of the disk (D), 

the disk thickness (H), and material fringe constant (F) with very similar results. These new 
experiments were conducted to validate and confirm the proposed method. 

 
 

 

 

Fig. 4: Results obtained through experimental measurements using the new equations with � = 19 and Step = 10 

of: δ, α, fringe order(n), σ1, σ2, von Mises stress(σ
υ
), σx, σy and τxy. 
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Fig. 5. A plot of the average error in 10
−6

 rad versus the number of frames (�) for angle α. 
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Fig. 6. A plot of the average error in 10
−6

 rad versus the number of frames (�) for angle δ. 

 

6. Conclusion 

 

This paper addresses the equations used for phase calculation measurements with images 
using the phase shifting technique. New equations are shown to be capable of processing the 
optical signal of photoelasticity. These techniques are very precise, easy to use and of low 

cost. On the basis of the performed error analysis, it can be concluded that the new equations 
are very good phase calculation algorithms. The metric analysis of the considered system 

demonstrated that its uncertainties of measurement depend on the frame period of the grid, on 
the resolution of photos in pixel and on the number of frames. However, the uncertainties 
involved in the measurement of the geometric parameters and the phase still require attention. 

In theory, if we have many frames, the measurement errors become very small. The 
measurement results obtained by the optical system demonstrate its industrial and engineering 

applications in experimental mechanics. 
New numerical equations are deduced to calculate the directions of the tensions and delays 

(phase maps of the isoclines and isochromatic fringes) for the full-field image automatically, 
by programming the phase shift method in digital photoelasticity. With these new equations, a 
larger number of images phase shifted only by rotation of the analyzer can be used, and the 

gain can be calculated with lower uncertainties. Numerical methods were employed in an 
unprecedented way with the photoelastic technique to obtain a methodology for deriving the 
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new equations. Until now, these equations were determined by algebraic and analytic 

methods. 
With the new equations, it was possible to develop a photoelastic system that moves the 

analyzer of the polariscope at a constant speed while a camera takes many pictures at equal 

intervals of times, like a film. The camera must have a very short exposure time (high shutter 
speeds). With this technique, the obtained measurements are more precise, and there are fewer 

uncertainties. 
Digital photoelasticity is an important optical metrology follow-up for stress and strain 

analysis using full-field digital photographic images. Advances in digital image processing, 

data acquisition, procedures for pattern recognition and storage capacity enable use of the 
computer-aided technique in automation and facilitate improvement of the digital photoelastic 

technique. Photoelasticity has seen some renewed interest in the past few years with digital 
imaging, image processing and new methods becoming readily available. However, further 
research is needed to improve the accuracy, the precision and the automation of the 

photoelastic technique.  
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